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Abstract—A string dictionary is a data structure for storing a
set of strings that maps them to unique IDs. It can manage
string data in compact space by encoding them into integers.
However, instances have recently emerged in practice where
the size of string dictionaries has become a critical problem
for very large datasets in many applications. A number of
compressed string dictionaries have been proposed as a solu-
tion. In particular, the application of Re-Pair, a powerful text
compression technique, to tries and front coding can help to
obtain compact string dictionaries that support fast dictionary
operations. However, the cost of constructing such dictionaries
using Re-Pair is impractical for large datasets. In this paper,
we propose an alternative compression strategy using string
dictionary encoding and develop several dictionary structures
for it. We show that our string dictionaries can be constructed
up to 422.5x faster than the Re-Pair versions with competitive
space and operation speed, through experiments on real-world
datasets.

1. Introduction

A string dictionary is a data structure for storing a set
of strings that maps them to unique IDs. In other words,
it supports two primitive operations: LOOKUP returns the
ID corresponding to a given string, and ACCESS returns the
string corresponding to a given ID. As the mapping is very
useful for string processing and indexing, string dictionaries
are a basic tool in many kinds of applications for Natural
Language Processing, Information Retrieval, Semantic Web,
Bioinformatics, Geographic Information Systems, and so on
[1]. Recently, Martı́nez-Prieto et al. [1] reported a number of
real examples where the size of string dictionaries emerges
as a critical problem for very large datasets. Therefore, a
number of compressed string dictionaries, focusing on static
applications, have been proposed as a solution [1]–[4].

To implement high-performance string dictionaries, two
choices concerning implementation technique and compres-
sion strategy are very important. With respect to the former,
string dictionaries based on tries [5], [6] and front coding [7]
have yielded the best performance. With respect to the latter,
Re-Pair [8] is a powerful text compression technique that
can implement very small string dictionaries supporting fast
LOOKUP and ACCESS operations. For example, Martı́nez-

Prieto et al. [1] proposed compressed front coding dictionar-
ies using Re-Pair. Grossi and Ottaviano [2] proposed cache-
friendly compressed trie dictionaries using Re-Pair. How-
ever, Re-Pair compression incurs large construction costs,
although it is theoretically executed in linear time and space
over the length of a given text.

In this paper, we propose a compression strategy that
uses string dictionaries for dictionary compression rather
than Re-Pair. We encode strings appearing in dictionaries
into integers using another string dictionary. This strategy
is inspired by studies on compressing trie structures using
the same structures [9], [10]. In Section 3, we show how to
apply the strategy to string dictionaries developed in [1], [2].
In Section 4, we propose several novel dictionary structures
for our strategy. In Section 5, we evaluate the developed
dictionaries through experiments on real-world datasets.

2. Preliminaries

This section defines basic notations and introduces the
basic tools for compact data structures.

2.1. Basic Notations

Strings are drawn from a finite alphabet Σ of size σ.
An array that consists of n elements, A[1]A[2] . . . A[n], is
denoted by A[1, n]. Functions bac and dae denote the largest
integer not greater than a and the smallest integer not less
than a, respectively. For example, b2.4c = 2 and d2.4e = 3.
The base of the logarithm used is 2 in this paper.

2.2. Rank Operation

Given a bit array B[1, n], we define the basic operation
RANKb(B, i) that returns the number of occurrences of bit
b ∈ {0, 1} in B[1, i]. For example, RANK1(B, 6) = 2 and
RANK0(B, 4) = 3 for B[1, 8] = [00100110]. This operation
can be performed in constant time with o(n) additional bits
[11], [12].

2.3. DFUDS Representation

The DFUDS (depth-first unary degree sequence) repre-
sentation [13] is a succinct tree representation [14] that rep-
resents an ordered tree using parentheses ( and ). DFUDS



encodes a node with d children into d (s and one ). For ex-
ample, a node with three children is encoded into (((). An
ordered tree is represented by concatenating the sequence of
parentheses in depth-first order while prepending an initial
(. DFUDS supports basic navigation operations on a tree
with n nodes in constant time with 2n + o(n) bits [11],
[15].

2.4. Elias-Fano Representation

The Elias-Fano representation of monotone sequences
[16], [17] is an encoding scheme to represent a non-
decreasing sequence. When the sequence consists of m inte-
gers in [0, n), the representation uses 2m+mdlog n

me+o(m)
bits while supporting direct constant-time access.

2.5. Re-Pair Compression

Re-Pair [8] is a practical technique of grammar-based
compression [18]. It finds the most frequent pair xy in a
text and replaces all its occurrences with a new symbol z.
A new rule z → xy is added to dictionary R. This process
iterates until all remaining pairs are unique in the text. As
a result, the original text is encoded into a compressed
sequence C with dictionary R. Each symbol of C is decoded
by recursively expanding the rules in R. This time taken
depends on its recursion depth.

3. String Dictionaries

A string dictionary is a data structure to store a set of
strings S ⊂ Σ∗ and map each string to unique identifiers in
[1, |S|]. The string dictionary supports two basic operations:

• LOOKUP(s) returns the ID if string s ∈ S.
• ACCESS(i) returns the string with ID i ∈ [1, |S|].
Encoding strings s1, s2, ..., sn into integers i1, i2, ..., in

using the string dictionary is referred to as dictionary encod-
ing. In most cases, the space required to store integers is less
than that needed to store strings. In this paper, we attempt to
improve existing string dictionaries by applying dictionary
encoding to strings appearing in them. This section describes
string dictionaries based on the path-decomposed trie (PDT)
[19] and front coding. Moreover, we show how to apply
dictionary encoding to these dictionaries.

In this section, we show examples for each string dic-
tionary using a set of strings ideal, ideas, ideology,
tea, techie, technology, tie, and trie.

3.1. Path-decomposed Trie (PDT)

PDT is a tree structure constructed by recursively de-
composing a trie into node-to-leaf paths. Each node of a
PDT corresponds to each path in the trie. We introduce a
succinct PDT representation proposed by Grossi and Otta-
viano [2].

The tree in Figure 1b is a PDT constructed by de-
composing the trie in Figure 1a into node-to-leaf paths
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Figure 1. Examples of a trie and a PDT

connected by a solid line. The nodes and edges have string
labels and branching characters, respectively. Such a PDT is
constructed as follows. First, we choose a root-to-leaf path π
in the trie. Second, we create a string by concatenating edge
characters along path π, interleaved with special characters
1, 2, . . . that indicate how many subtries branch off that point
along path π. Third, we associate the string with root node
uπ of the PDT. The children of root node uπ are recursively
defined as the root nodes of PDTs corresponding to each
subtrie hanging off the path π.

Although a strategy of choosing a path is arbitrary,
the example chooses the heavy path [19]. The heavy path
always follows a heavy child, which is the one whose subtrie
has the most leaves. This strategy is called centroid path
decomposition. The height of the resulting tree is bounded
by O(log |S|). Therefore, centroid path decomposition can
reduce the number of node-to-node random accesses. In this
paper, we use centroid path decomposition to implement
PDT dictionaries.

For PDT representation, each node v is represented by
three sequences: Lv stores the node label, Ev stores the
branching characters from node v in reverse, and Bv is the
DFUDS representation of node v. The node IDs are assigned
in depth-first order. The PDT is represented by sequences L,



E, and B obtained by concatenating Lv, Ev, and Bv in order
of node ID. To maintain the boundaries of the node labels,
the Elias-Fano representation is used. We do not describe
how to perform LOOKUP and ACCESS because they are
complex. The interested reader can refer to the literature
[2].

Compression Strategies. In [2], the sequence of node labels
L was compressed using a variant of Re-Pair based on
the approximate Re-Pair [20]. This Re-Pair can support
scanning labels in constant time per character. In other
words, the decoding and construction costs are reduced, but
some space efficiency is sacrificed.

On the other hand, our strategy replaces node labels with
integer IDs using dictionary encoding. As shown at the bot-
tom of Figure 1b, the sequence of IDs L′ is generated from
L. Note that the node labels consist of characters drawn from
Σ′ = Σ∪{1, 2, . . . , σ−1}. In practice, Σ′ = [0, 511) because
Σ = [0, 256). We encode the characters into byte characters
using VByte coding [21] to use dictionary encoding. To
shorten the length of the byte sequence, we assign character
code values from 0 in order of frequency of appearance.
The Elias-Fano representation is not needed because L′ is
a fixed-length array.

3.2. Front Coding

Front coding [7] is a technique to compress lexicograph-
ically sorted strings. It encodes each string as a pair (`, α),
where ` is the length of the longest common prefix with its
predecessor and α is the remaining suffix. This technique
exploits the fact that real-world strings have similar prefixes,
such as URLs and natural language words.

To allow for direct access, the strings are divided into
buckets encoding b strings each. Each first string (referred
to as the header) is explicitly stored. The remaining b − 1
strings (referred to as internal strings) are differentially
encoded, each with respect to its predecessor. The top of
Figure 2 shows an example of front coding with b = 4.
The headers are ideal and techie. The simplest imple-
mentation encodes the dictionary into a byte sequence and
maintains the starting address of each header; this is called
plain front coding (PFC) [1].

Dictionary Operations. LOOKUP(s) is performed in two
steps. The first step consists of a binary search for string s
in the set of headers to obtain the target bucket. The second
step sequentially decodes the internal strings of the bucket
while comparing each with s.

ACCESS(i) is performed in two steps as well. The first
step determines the appropriate bucket ID with a simple
division di/be. The second step sequentially decodes the
internal strings of the bucket until it obtains the ((i−1) mod
b)-th internal string.
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Figure 2. Examples of front coding with b = 4

Compression Strategies. In [1], the PFC was compressed
by applying Re-Pair to the internal strings.1 The authors
used a public implementation of Re-Pair2 based on the
original [8]. Therefore, the compression rate was very high,
but so was construction cost.

On the other hand, our strategy replaces internal strings
with integer IDs using dictionary encoding. The bottom of
Figure 2 shows an example. Our front coding dictionary
consists of three arrays: H stores the header strings with a
special terminator $, P stores the header initial addresses,
and L interleaves the shared lengths and the IDs.

4. Auxiliary String Dictionaries

To avoid confusion, we refer to a string dictionary used
for dictionary compression as an auxiliary string dictionary.
As described in Section 3, it encodes strings appearing in the
PDT and front coding dictionaries into integer IDs. Note that
we do not restrict the integer range of the IDs. The auxiliary
string dictionary supports the following operations:

• EXTRACT(i) returns the string with ID i.
• COMPARE(i, q) returns the result of comparison be-

tween strings EXTRACT(i) and q.

Although EXTRACT is the same as ACCESS, we rede-
fine it to avoid notational confusion. COMPARE is called
during LOOKUP. It is always supported when EXTRACT is
supported; however, COMPARE can stop decoding when a
mismatch occurs. The auxiliary string dictionary does not
need string search operations such as LOOKUP because its
role is to decode the stored strings.

In this section, we propose several auxiliary string dic-
tionaries by considering the following:

• For each LOOKUP or ACCESS, EXTRACT and
COMPARE are called multiple times; therefore, de-
coding speed is especially important.

1. Although [1] also proposed header compression with Hu-Tucker
coding [6], we intend to compare Re-Pair compression with dictionary
encoding; therefore, we do not evaluate header compression.

2. https://www.dcc.uchile.cl/∼gnavarro/software/
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Figure 4. Examples of a reverse trie and RPDT

• As tries and front coding merge prefixes, the like-
lihood that the target strings for compression have
many similar suffixes is high; therefore, we imple-
ment auxiliary string dictionaries by merging the
suffixes.

We show examples for each auxiliary string dictionary
using strings ch, faggy, ide, ie, nology, ology, and
rie mapped to IDs A, B,. . ., and G, respectively.

4.1. Plain Concatenation and Sharing

The simplest data structure to implement an auxiliary
string dictionary concatenates the strings with a terminator.
Each starting address is obtained as an ID. When a string is
included in the suffix of another, the suffix can be shared.
Such an array is generally called TAIL [4], [22]. Figure
3 shows an example of TAIL. Strings ie and ology
are shared by rie and nology, respectively. Compared
to other auxiliary string dictionaries described below, its
compression rate is low but its decoding speed is the fastest.

4.2. Reverse Trie

A reverse trie is constructed by merging suffixes rather
than prefixes. The root corresponds to string terminations.
The strings are decoded by traversing nodes to the root.
That is to say, we can perform EXTRACT and COMPARE
by maintaining the starting node IDs. Figure 4a shows an
example of a reverse trie. For the purpose of illustration, the
reverse trie has a super root with a special terminator $.

Several dictionary structures using reverse tries have
been proposed [9], [10] and implemented as open-source

software, such as the ux-trie3 and marisa-trie4 libraries.
These structures implement reverse tries using the double-
array [23] and LOUDS (level-order unary degree sequence)
[11], [24] representations. The double array is a pointer-
based data structure that can provide the fastest trie repre-
sentation; however, its space efficiency is low. LOUDS is
a succinct tree that can construct very small dictionaries;
however, its node-to-node traversal is slow.

To solve the trade-off problem, the use of path de-
composition is a workable alternative, but the existing rep-
resentation [2] cannot immediately detect mismatches in
COMPARE because the node label must be scanned from
the head. Therefore, we propose a novel reverse trie repre-
sentation with path decomposition, namely the reverse path-
decomposed trie (RPDT).

Reverse Path-decomposed Trie (RPDT). An implemen-
tation of RPDT is simpler than that in [2] because the
reverse trie for auxiliary string dictionaries does not re-
quire finding children. Figure 4b shows an example of the
RPDT constructed from the reverse trie of Figure 4a. The
example RPDT is constructed by applying centroid path
decomposition to the reverse trie and assigning node IDs
in breadth-first order. The node labels do not contain the
special characters 1, 2, . . . because it is not necessary to find
children.

To represent the RPDT, we use three sequences: L stores
strings obtained by concatenating pairs of branching charac-
ters and node labels in order of node ID, B is a bit sequence
such that B[i] = 1 if L[i] stores a branching character,
and P stores addresses of L where each edge branches
off in order of node ID. As P becomes a non-decreasing
sequence, we can use the Elias-Fano representation. We
perform EXTRACT on the sequences as in Algorithm 1.

Algorithm 1 EXTRACT(i) in RPDT
1: Initialize str to an empty string
2: while L[i] 6= $ do
3: Push back L[i] to str
4: if B[i] = 1 then i← P [RANK1(B, i)]
5: else i← i− 1
6: end while
7: return str

Theoretical Analysis. We assume that the number of nodes
in a reverse trie is n. L and B use ndlog σe bits and n+o(n)
bits, respectively. P uses 2m+mdlog n

me+o(m) bits, where
|P | = m. A succinct tree uses 2n + ndlog σe + o(n) bits
to represent the reverse trie. In roughly 2m+ dlog n

me < n,
the RPDT representation is smaller than the succinct tree
representations. Note that m is the number of leaves in the
reverse trie minus one. As shown in Figure 4, m becomes
considerably smaller than n. Therefore, its space efficiency
can outperform that of the succinct tree representation.

3. https://github.com/hillbig/ux-trie
4. https://github.com/s-yata/marisa-trie
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Moreover, its cache efficiency is high because of centroid
path decomposition.

4.3. Back Coding

We implement an auxiliary string dictionary by applying
front coding to suffixes. In this paper, we refer to the
technique as back coding. The left part of Figure 5 shows
an example of back coding. In the same manner as the front
coding dictionaries, we divide strings into buckets of size b
and encode them from each header. Since auxiliary string
dictionaries need fast operations, we implement the back
coding dictionary using PFC.

Faster Decodable Implementation. To support faster de-
coding, we introduce an alternative implementation using
the differences among headers instead of predecessors [25].
We refer to the technique as fast back coding (FBC). The
right part of Figure 5 shows an example of FBC. The
technique does not need to decode internal strings other
than the target string. In other words, the maximum number
of memory copies for each EXTRACT or COMPARE is 2.
However, some space efficiency is sacrificed because the
number of shared characters decreases.

5. Experimental Evaluation

This section analyzes the practical performance of string
dictionaries compressed by the proposed dictionary encod-
ing on real-world datasets.

5.1. Settings

We carried out the experiments on Intel Xeon E5540
@2.53 GHz, with 32 GiB of RAM (L2 cache: 1 MiB; L3
cache: 8 MiB), running Ubuntu Server 16.04 LTS. The data
structures were implemented in C++ and compiled using
g++ (version 5.4.0) with optimization -O9. The runtimes
were measured using std::chrono::duration cast.

Data Structures. We applied the auxiliary string dictionar-
ies described in Section 4 (i.e., TAIL, RPDT, back coding,
and FBC) to the string dictionaries described in Section 3
(i.e., PDT and front coding). For back coding and FBC,
we tested two bucket sizes of 4 and 8. The dictionaries are
referred to as BC4, BC8, FBC4, and FBC8.

We also evaluated Re-Pair compression. Although some
Re-Pair implementations are available, we used those used

TABLE 1. INFORMATION CONCERNING DATASETS

Size Strings Ave. length Chars

GEONAMES 101.2 6,784,722 15.6 96
NWC 439.4 20,722,756 22.2 180
ENWIKI 227.2 11,519,354 20.7 199
INDOCHINA 612.9 7,414,866 86.7 98
UK 2,723.3 39,459,925 72.4 103
DBPEDIA 3,326.5 64,626,232 54.0 95

by each proponent described in Section 3. Note that we can
choose other lightweight compression techniques, such as
Huffman coding [26] and online grammar compression [27],
[28]; however, Re-Pair is the most popular compression tool
at present because its compression rate is very high and its
decoding speed is fast.

To implement PDT and front coding dictionaries, we
used the path decomposed tries5 and libCSD6, respectively.
We set the bucket size of front coding to 8 based on past
experiments [2]–[4]. To implement the basic tools described
in Section 2, we used the Succinct library [29].

Datasets. We used the following real-world datasets:

• GEONAMES: Geographic names from the asciiname
column of the GeoNames dump.7

• NWC: Japanese word ngrams in the Nihongo Web
Corpus 2010.8

• ENWIKI: All page titles from English Wikipedia in
February 2015.9

• INDOCHINA: URLs of a 2004 crawl by the Ubi-
Crawler [30] on the country domains of Indochina.10

• UK: URLs of a 2005 crawl by the UbiCrawler [30]
on the .uk domain.11

• DBPEDIA: URIs extracted from the dataset generated
by the DBpedia SPARQL Benchmark [31].12

Table 1 summarizes relevant statistics for each dataset,
where Size is the total length of strings (i.e., the raw size) in
MiB, Strings is the number of different strings, Ave. length
is the average number of characters per string, and Chars is
the number of different characters in the dataset.

Table 2 summarizes statistics of target strings of the
auxiliary string dictionaries, where Size is the total length
of strings in MiB, Strings (before) is the number of strings,
Strings (after) is the number of strings obtained by removing
duplication (i.e., the string set size), Reduction is its reduc-
tion rate in percentage, Ave. length is the average number
of characters per string in the string set, and Ave. calls is
the average number of COMPARE calls for each LOOKUP

5. https://github.com/ot/path decomposed tries
6. https://github.com/migumar2/libCSD
7. http://download.geonames.org/export/dump/allCountries.zip
8. http://dist.s-yata.jp/corpus/nwc2010/ngrams/word/over999/filelist
9. https://dumps.wikimedia.org/enwiki/
10. http://data.law.di.unimi.it/webdata/indochina-2004/indochina-2004.

urls.gz
11. http://data.law.di.unimi.it/webdata/uk-2005/uk-2005.urls.gz
12. DS2 at https://exascale.info/projects/web-of-data-uri/



TABLE 2. INFORMATION ABOUT STRINGS

Size Strings (before) Strings (after) Reduction Ave. length Ave. calls

GEONAMES
PDT 36.4 6,784,722 1,670,795 24.6 11.5 6.16
Front coding 34.6 5,936,631 1,354,818 22.8 10.9 3.50

NWC
PDT 77.8 20,722,756 1,873,988 9.0 18.5 6.59
Front coding 69.6 18,132,411 202,058 1.1 8.5 3.50

ENWIKI
PDT 90.3 11,519,354 3,762,531 32.7 14.4 6.26
Front coding 83.0 10,079,434 2,921,168 29.0 13.5 3.50

INDOCHINA
PDT 134.6 7,414,866 1,299,775 17.5 44.7 6.61
Front coding 121.6 6,488,007 1,204,600 18.6 42.5 3.50

UK
PDT 655.4 39,459,925 11,957,102 30.3 35.2 6.96
Front coding 591.7 34,527,434 10,756,301 31.2 34.2 3.50

DBPEDIA
PDT 1423.3 64,626,232 12,199,056 18.9 30.1 7.41
Front coding 1274.8 56,547,953 9,969,214 17.6 30.3 3.50

(or EXTRACT calls for each ACCESS). From the table, we
can considerably reduce the number of strings by removing
duplication. In front coding, the average number of calls is
essentially 3.5 because the number of internal strings for
each bucket is 7.

5.2. Results

Tables 3 and 4 show the experimental results for the
construction time in seconds (Constr), percentage of com-
pression ratio between the data structure and the raw data
size (Cmpr), and average running times of LOOKUP and
ACCESS in microseconds (Lookup and Access). The top two
results are highlighted. To measure the running times of
LOOKUP, we chose one million random strings from each
dataset. The running times of ACCESS were measured for
one million IDs corresponding to the random strings. Each
test was averaged over 10 runs.

Results for PDT (Table 3). All auxiliary string dictionaries
yield short construction times. Compared to Re-Pair, our
strategy provides up to 8.2x faster construction. The com-
pression rate of Re-Pair is the lowest, except for INDOCHINA
and UK. In INDOCHINA and UK, BC8 and RPDT construct
slightly smaller dictionaries. For the runtimes of LOOKUP
and ACCESS, TAIL is the fastest in all cases. Compared
to Re-Pair, TAIL respectively provides up to 1.7x and 1.5x
speed up on LOOKUP and ACCESS; however, its compres-
sion rate is the worst.

Overall, RPDT and FBC appear to be good data struc-
tures taking into account all aspects. RPDT altogether out-
performs Re-Pair on INDOCHINA. FBC altogether outper-
forms Re-Pair on INDOCHINA and UK. In the other datasets,
RPDT and FBC provide much shorter construction times
than Re-Pair with the competitive compression rates and
operation times. Back coding is compact but requires long

operation times. If fast LOOKUP and ACCESS operations are
needed, TAIL becomes a viable alternative.

Results for Front Coding (Table 4). Since this Re-Pair im-
plementation is based on the original, its compression rates
are better than those of the PDT results, but its construc-
tion and decoding costs are higher. On UK and DBPEDIA,
Re-Pair respectively takes approximately 3.5 and 3 hours
because the size of the target strings is very large. These
times are impractical. On the other hand, all auxiliary string
dictionaries provide practically short construction times as
well as satisfactory PDT results. When comparing TAIL and
Re-Pair, the differences are from 30.8x to 422.5x. In terms
of compression rate, Re-Pair is the smallest in all cases.
Compared to the second smallest dictionaries, Re-Pair is up
to 4% smaller. However, its LOOKUP and ACCESS times
are slower.

Overall, our dictionaries are competitive with the Re-Pair
dictionaries except in terms of construction time. Further,
our construction times are very short and practical. Back
coding is not very slow compared to the PDT results because
the number of calls is small. TAIL can provide very fast
LOOKUP and ACCESS operations as well as PDT results.

6. Conclusion

In this paper, we have proposed several dictionary struc-
tures to compress string dictionaries. Moreover, we have
evaluated the proposed structures by experiments using real-
world datasets. The results have shown that our strategy
can construct high-performance string dictionaries in a short
time. In particular, RPDT and FBC are comprehensively
superior to Re-Pair.

In this paper, we have addressed string dictionary com-
pression; however, the proposed auxiliary string dictionaries



TABLE 3. RESULTS OF PDT

GEONAMES NWC ENWIKI
Constr Cmpr Lookup Access Constr Cmpr Lookup Access Constr Cmpr Lookup Access

Re-Pair 26.6 31.5 2.17 2.11 58.0 16.9 2.73 2.72 62.1 31.6 2.59 2.50
TAIL 4.0 44.4 1.51 1.54 11.0 26.7 2.10 2.04 8.3 41.7 1.72 1.76
RPDT 5.8 34.9 1.92 1.90 16.0 23.0 2.68 2.53 11.8 32.4 2.40 2.26
BC4 5.4 38.5 3.51 3.66 14.2 22.9 5.14 5.11 10.6 36.0 4.56 4.66
BC8 5.2 36.6 3.91 4.05 14.8 22.2 5.58 5.80 10.5 33.8 5.13 5.33
FBC4 5.3 39.1 1.93 2.12 14.2 23.2 2.48 2.62 10.6 37.0 2.29 2.38
FBC8 5.3 38.0 2.11 2.11 14.1 22.8 2.72 2.90 10.6 35.9 2.49 2.62

INDOCHINA UK DBPEDIA
Constr Cmpr Lookup Access Constr Cmpr Lookup Access Constr Cmpr Lookup Access

Re-Pair 55.0 11.8 3.70 3.61 437.2 17.5 4.00 3.98 798.9 14.7 2.30 2.32
TAIL 7.8 13.5 2.19 2.40 55.7 20.7 2.59 2.94 102.8 18.5 1.59 1.82
RPDT 9.3 10.7 3.32 3.38 58.6 16.4 4.16 3.91 158.3 15.8 2.40 2.52
BC4 8.6 10.9 6.41 6.91 63.4 16.9 7.02 7.60 124.8 15.9 6.26 6.68
BC8 8.6 10.3 7.50 8.05 53.3 15.9 7.93 8.45 122.1 15.2 6.69 7.16
FBC4 8.6 11.3 2.74 3.03 53.5 17.3 3.24 3.55 133.2 16.2 2.17 2.41
FBC8 8.6 11.2 3.20 3.44 53.5 16.9 3.66 3.91 132.8 15.9 2.56 2.78

TABLE 4. RESULTS OF FRONT CODING

GEONAMES NWC ENWIKI
Constr Cmpr Lookup Access Constr Cmpr Lookup Access Constr Cmpr Lookup Access

Re-Pair 83.6 38.4 2.09 1.25 289.2 25.4 2.16 1.09 667.2 36.5 2.63 1.59
TAIL 2.7 48.3 1.24 0.53 7.7 28.3 1.47 0.50 6.1 45.3 1.51 0.66
RPDT 4.7 41.6 1.65 0.85 14.2 27.7 1.64 0.58 9.6 38.7 2.23 1.21
BC4 4.3 44.5 1.80 0.98 13.8 27.4 1.84 0.87 8.6 41.9 2.16 1.19
BC8 4.4 43.0 2.07 1.15 13.8 27.3 1.95 0.90 10.0 40.2 2.29 1.33
FBC4 4.5 45.0 1.57 0.82 13.7 27.4 1.68 0.70 8.6 42.7 2.00 1.09
FBC8 4.3 44.2 1.68 0.93 13.7 27.4 1.82 0.85 8.8 42.0 2.04 1.13

INDOCHINA UK DBPEDIA
Constr Cmpr Lookup Access Constr Cmpr Lookup Access Constr Cmpr Lookup Access

Re-Pair 2042.8 18.2 3.88 2.25 11835.2 22.3 4.28 2.41 10774.6 22.6 4.27 2.85
TAIL 4.3 25.0 2.03 0.71 28.0 31.4 2.32 0.77 55.3 28.6 1.53 0.74
RPDT 6.7 22.3 2.60 1.17 50.0 27.1 3.64 1.73 123.1 27.0 2.02 1.28
BC4 5.9 22.5 2.71 1.32 42.6 27.7 3.18 1.59 94.0 27.0 2.17 1.40
BC8 5.9 22.0 3.05 1.65 43.4 26.8 3.60 1.97 92.2 26.4 2.41 1.61
FBC4 5.9 22.9 2.45 1.14 43.3 28.1 3.02 1.47 91.6 27.3 2.05 1.34
FBC8 6.1 22.7 2.73 1.30 43.4 27.7 3.04 1.51 96.6 27.0 2.16 1.45

can be used to compress other data structures partly con-
taining strings. In the future, we will investigate such data
structures and conduct application experiments.

Acknowledgment

This work was supported by JSPS KAKENHI Grant
Number 17J07555. We would like to thank Editage (www.
editage.jp) for English language editing.

References

[1] M. A. Martı́nez-Prieto, N. Brisaboa, R. Cánovas, F. Claude, and
G. Navarro, “Practical compressed string dictionaries,” Information
Systems, vol. 56, pp. 73–108, 2016.

[2] R. Grossi and G. Ottaviano, “Fast compressed tries through path
decompositions,” ACM Journal of Experimental Algorithmics, vol. 19,
no. 1, p. Article 1.8, 2014.

[3] J. Arz and J. Fischer, “LZ-compressed string dictionaries,” in Proc.
Data Compression Conference (DCC), 2014, pp. 322–331.

[4] S. Kanda, K. Morita, and M. Fuketa, “Compressed double-array
tries for string dictionaries supporting fast lookup,” Knowledge and
Information Systems, vol. 51, no. 3, pp. 1023–1042, 2017.

[5] E. Fredkin, “Trie memory,” Communications of the ACM, vol. 3,
no. 9, pp. 490–499, 1960.

[6] D. E. Knuth, The art of computer programming, 3: sorting and
searching, 2nd ed. Redwood City, CA, USA: Addison Wesley, 1998.

[7] I. H. Witten, A. Moffat, and T. C. Bell, Managing gigabytes: com-
pressing and indexing documents and images. San Francisco, CA,
USA: Morgan Kaufmann, 1999.

[8] N. J. Larsson and A. Moffat, “Off-line dictionary-based compression,”
Proc. the IEEE, vol. 88, no. 11, pp. 1722–1732, 2000.

[9] J. Aoe, K. Morimoto, M. Shishibori, and K.-H. Park, “A trie com-
paction algorithm for a large set of keys,” IEEE Transactions on
Knowledge and Data Engineering, vol. 8, no. 3, pp. 476–491, 1996.

[10] S. Yata, “Dictionary compression by nesting prefix/patricia tries (in
Japanese),” in Proc. 17th Annual Meeting of the Association for
Natural Language, 2011.



[11] G. Jacobson, “Space-efficient static trees and graphs,” in Proc. 30th
IEEE Symposium on Foundations of Computer Science (FOCS).
IEEE, 1989, pp. 549–554.
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