
Under consideration for publication in Knowledge and Information
Systems

A compression method of double-array
structures using linear functions

Shunsuke Kanda, Masao Fuketa, Kazuhiro Morita and Jun-ichi Aoe
Department of Information Science and Intelligent Systems, Tokushima University,

Minamijosanjima 2-1, Tokushima 770-8506, Japan

Abstract. A trie is one of the data structures for keyword search algorithms and is
utilized in natural language processing, reserved words search for compilers and so on.
The double-array and LOUDS are efficient representation methods for the trie. The
double-array provides fast traversal at time complexity of O(1), but the space usage of
the double-array is larger than that of LOUDS. LOUDS is a succinct data structure
with bit-string, and its space usage is extremely compact. However, its traversal speed
is not so fast. This paper presents a new compression method of the double-array with
keeping the retrieval speed. Our new method compresses the double-array by dividing
the double-array into blocks and by using linear functions. Experimental results for
varied keywords show that our new method reduced space usage of the double-array
up to about 44% and the retrieval speed of the new method was 9-14 times faster than
that of LOUDS. Moreover, the results show that the construction speed of the new
method was faster than that of the conventional method for a large keyword set.

Keywords: Trie; Double-array; Compression method; Information retrieval

1. Introduction

A trie (Fredkin, 1960) is an ordered tree structure with a character on the edge
for keyword retrieval. The term “trie” coined by Fredkin was from the word
“retrieval”. The trie has many functions and is applicative. Therefore, it is used
in a broad range of applications to represent a keyword set in fields such as
natural language processing (Baeza et al, 1996; Yang et al, 2012), reserved words
search for compilers (Aho et al, 2006), text indexing (Navarro, 2004), IP address
lookup (Huang et al, 2011) and so on (Aho et al, 1975; Peterson, 1980; Srinivasan

Received Jan 09, 2015
Revised Jul 23, 2015
Accepted Jul 27, 2015

2 S. Kanda et al.

et al, 1998; Brain et al, 1994; Aoe et al, 1996; Fu et al, 2007). Traditionally, the
trie was represented either by a two-dimensional array called a matrix form or
by a linked-list called a list form. As the matrix form includes many empty
elements and is a sparse data structure, its space usage is very large. The list
form represents the trie in a more compact form, but its retrieval speed is not
so fast.

The double-array presented by Aoe (Aoe, 1989; Aoe et al, 1992; Yata et
al, 2007a) is an efficient data structure that represents the trie with two one-
dimensional arrays called BASE and CHECK. The double-array provides fast
traversal at time complexity of O(1). BASE and CHECK are arrays which rep-
resent node numbers. Let n and m be the number of trie nodes and empty
elements, respectively. BASE and CHECK elements require log (n+m) bits1

each, and the space usage of the double-array is 2(n+m) log (n+m) bits. How-
ever, n + m nearly equals to n because m is empirically very small in general.
The double-array provides a extremely fast retrieval for the trie, and the memory
efficiency is the same as the list form. Therefore, it has been used in many ap-
plications (e.g. Darts2, Darts-clone3, Chasen4 and Mecab5). To reduce the space
usage of the double-array with keeping the retrieval speed, Yata et al. presented
Compacted Double-Array (CDA) (Yata et al, 2007b) and Fuketa et al. presented
Single-Array with Multi Code (SAMC) (Fuketa et al, 2014). CDA keeps charac-
ters in CHECK, and each CHECK element is always represented by log σ bits,
where σ denotes the number of character kinds. The space usage of CDA is
(n+m) log (n+m) + (n+m) log σ bits. CDA is more compact than the original
double-array because log (n+m) > log σ in general. SAMC deletes BASE from
CDA by using the numerical code matrix corresponding to each character and
each depth of the trie. The space usage of SAMC is (n+m) log σ+hσ log (n+m)
bits, where h denotes the height of the trie. SAMC becomes compact as the suc-
cinct data structures discussed later when h is small, but the method is for fixed
length keywords such as a zip code.

To represent tree structures with extremely compact space, many researches
have been devoted to so-called succinct data structures for trees. Basically, there
are three types of succinct tree representations: Balanced Parentheses sequence
(BP) (Jacobson, 1989; Munro et al, 2001), Depth-First Unary Degree Sequence
(DFUDS) (Benoit et al, 2005; Jansson et al, 2007) and Level-Order Unary Degree
Sequence (LOUDS) (Jacobson, 1989; Delpratt et al, 2006). These represent an
ordered tree with 2n+o(n) bits. BP and DFUDS are constructed on sequence of
balanced parentheses. These provide many operations for the tree such as giving
the number of nodes in the subtree of a node and so on. Especially, DFUDS sup-
ports more operations in constant time, but BP and DFUDS require complicated
additional data structures to operate balanced parentheses, and their space us-
age is not negligible in practice. To solve this problem, Sadakane et al. proposed
a simple representation for balanced parentheses called Fully-Functional succinct
tree representation (FF) (Sadakane et al., 2010). When BP and DFUDS are im-
plemented with FF, the space usage of the additional data structures is very

1 The base of logarithm is 2 throughout this paper.
2 Darts: Double-ARray Trie System. http://chasen.org/~taku/software/darts/
3 Darts-clone: A clone of the Darts. https://code.google.com/p/darts-clone/
4 ChaSen legacy: an old morphological analyzer. http://chasen-legacy.sourceforge.jp/
5 MeCab: Yet Another Part-of-Speech and Morphological Analyzer. http://mecab.
googlecode.com/svn/trunk/mecab/doc/index.html

A compression method of double-array structures using linear functions 3

small and the BP and DFUDS become practicable. In (Arroyuelo et al, 2010),
Arroyuelo et al. concluded that FF stands out as an excellent practical combina-
tion of space occupancy, time performance and functionality. On the other hand,
LOUDS is the simplest representation because of not requiring a balanced paren-
theses representation, but it lacks many basic operations for the tree. However,
the trie only needs to traverse to a child node with a character when a keyword
is retrieved. In terms of operations for traversing to a child node and getting a
label of edge, Arroyuelo et al. concluded that LOUDS excels in (Arroyuelo et
al, 2010). LOUDS representation for the trie is more compact than CDA be-
cause LOUDS requires 2n+1 and n log σ bits for the tree structure and labels of
edges, respectively. The traversal speed of LOUDS is slower than that of CDA
because LOUDS requires to go through extra nodes and to operate bit-string.
The experiments in (Fuketa et al, 2014) have shown the results that the retrieval
of CDA is much faster than that of LOUDS.

This paper presents a new compression method for the double-array with
keeping the retrieval speed. Our new method compresses the space usage of
BASE element from log (n+m) bits to arbitrary x bits by dividing the double-
array into blocks and using linear functions. As the new method keeps features
of the double-array, its retrieval speed is very fast when compared to LOUDS.
In addition, the construction speed of the new method is stable and fast because
of dividing the double-array into blocks.

The rest of the paper is organized as follows. Section 2 describes the trie
and LOUDS. Section 3 describes the double-array, CDA and the construction
algorithms. Section 4 proposes a new compression method of the double-array.
Section 5 describes the retrieval and construction algorithms. Section 6 shows
theoretical and experimental evaluations. Section 7 concludes this paper and
indicates future studies.

2. Trie

2.1. Trie structure

Trie is an ordered tree data structure to store keywords. Fig. 1 shows a trie for
keyword set K = {“ab”, “abc”, “ac”, “ba”, “bac”, “bc”}. In the trie, each keyword
is registered as the path from a root node to a leaf node. However, when keywords
“ab” and “abc” are registered in the trie, we can not identify “ab” because “abc”
includes “ab” as the prefix. Therefore, special end marker ‘#’ is added at the
end of keywords to associate each keyword with each leaf node.

A traversal on the trie6 starts from a root node and retrieves each character
in the keyword to a leaf node step by step. Furthermore, the prefixes of keywords
are merged. Therefore, the trie can retrieve the longest prefixes at high speed,
and the trie provides exact search, common prefix search and predictive search
efficiently.

Traditionally, the trie is implemented by the matrix and list form. The matrix
form provides fast traversal at time complexity of O(1), but it requires large
spaces because it becomes sparse. The list form is more compact, but its retrieval
speed is relatively slow because it requires to go through extra nodes. The trie

6 In this paper, “traversal” in the trie means a transition from a parent node to a child node.

4 S. Kanda et al.

Fig. 1. A trie for keyword set K.

is efficiently represented by the double-array and LOUDS. The double-array can
retrieve very fast and is relatively compact. LOUDS is extremely compact, but
its retrieval speed is not so fast.

Example 1. In Fig. 1, when “ba” is retrieved, the trie traces a route from node
0 (root node) to node 2, node 5, node 10 (leaf node).

2.2. LOUDS structure

As noted in Section 1, we consider LOUDS as the best succinct tree represen-
tation for the trie among other succinct data structures. This subsection shows
the LOUDS structure for the trie. LOUDS represents a tree structure with a
bit-string called LOUDS Bit-String (LBS). Fig. 2 shows LOUDS for keyword
set K. LBS is a succinct bit-string represents the number of child nodes accord-
ing to breadth-first order. Each ‘1’ in LBS corresponds to each node. The first
“10” called a super root always stays at the head of LBS as shown in Fig. 2.
rank/select operations are needed to use LBS as a tree structure.

– rankb(B, i) returns the number of b ∈ {0, 1} up to the i-th position in bit-string
B.

– selectb(B, i) returns the position of the i-th b ∈ {0, 1} in bit-string B.

The operations are widely used for bit-string handling.
LOUDS represents the trie by using LBS and an array called LABEL. LA-

BEL stores trie characters. The trie is traversed by following computations, but
argument B in rank/select is omitted for legibility because B = LBS is obvious.

– LBS position j corresponding to the first child of LBS[i] = 1 is computed with
j = select0(rank1(i)) + 1; However, if LBS[j] = 0, such a node does not exist.

– LBS position j corresponding to the next sibling of LBS[i] = 1 is computed
with j = i+ 1; However, if LBS[j] = 0, such a node does not exist.

– Character c of the edge between the node of LBS[i] = 1 and its parent is
computed with c = LABEL[rank1(i)− 1].

The space usage of LBS and LABEL are 2n+ 1 and n log σ bits, respectively.
LOUDS is more compact than the double-array. In terms of traversal, its time
complexity is O(σ) when sibling nodes are searched sequentially.

A compression method of double-array structures using linear functions 5

Fig. 2. Trie representation of LOUDS for keyword set K.

Example 2. In Fig. 2, suppose searching for the keyword “ba”. First, consider
the arc from root node 0 with ‘b’. LBS[0] corresponds to node 0. The LBS position
corresponding to the first child of LBS[0] is computed with select0(rank1(0)) +
1 = 2. Because of LABEL[rank1(2) − 1] = LABEL[1] = ‘a’ 6= ‘b’, the next
sibling is checked. The LBS position corresponding to the next sibling of LBS[2]
is computed with 2 + 1 = 3, and the next sibling exists because of LBS[3] = 1.
Because of LABEL[rank1(3)−1] = LABEL[2] = ‘b’, the child node of 0 with ‘b’ is
computed. In the same manner as the above-mentioned arc, arcs with ‘a’ and ‘#’
are computed by select0(rank1(3))+1 = 8, LABEL[rank1(8)−1] = LABEL[5] =
‘a’ and select0(rank1(8)) + 1 = 16, LABEL[rank1(16)− 1] = LABEL[10] = ‘#’.

3. Double-array

3.1. Double-array structure

Double-array proposed by Aoe uses two one-dimensional arrays called BASE and
CHECK in order to represent trie nodes. Fig. 3 shows a double-array for keyword
set K. Basically, each double-array element of BASE and CHECK corresponds
to each node in the trie. For example, BASE[s] and CHECK[s] corresponds to
node s. The following equations show an arc from node s to node t with character
c;

BASE[s] + CODE[c] = t, CHECK[t] = s. (1)

The index of child node t is calculated by the sum of BASE[s] and CODE[c].
CODE[c] is the numerical code of character c, and 0 ≤ CODE[c] < σ. The index
of parent node s is stored in CHECK[t].

From Equation (1), the double-array provides the traversal with very few
computing, and the traversal time complexity is O(1). The retrieval speed of the
double-array is overwhelmingly faster than that of LOUDS. For example, the

6 S. Kanda et al.

Fig. 3. Trie representation of ODA for keyword set K.

experiments in (Fuketa et al, 2014) have given the result that the double-array
can retrieve 12-15 times faster than LOUDS.

The double-array can have empty elements (unused node numbers) because
the double-array satisfies Equation (1). Let n and m be the number of trie
nodes and empty elements, respectively. BASE and CHECK elements require
log (n+m) bits each because BASE and CHECK values correspond to node
numbers. The space usage of the double-array is 2(n + m) log (n+m) bits, but
m is a negligible value as compared to n. In this paper, this Original Double-
Array method is called ODA.

Example 3. In Fig. 3, suppose searching for the keyword “ba”. First, the arc
from root node 0 to node 2 with ‘b’ is established by BASE[0] + CODE[‘b’] =
0 + 2 = 2, CHECK[2] = 0. In the same manner as the above-mentioned arc,
arcs with ‘a’ and ‘#’ are established by BASE[2] + CODE[‘a’] = 4 + 1 = 5,
CHECK[5] = 2 and BASE[5] + CODE[‘#’] = 10 + 0 = 10, CHECK[10] = 5.

3.2. Compacted double-array structure

Compacted Double-Array (CDA) presented by Yata et al. reduces the space
usage of ODA. Fig. 4 shows CDA for keyword set K. In this method, characters
are stored in CHECK. Therefore, Equation (1) is changed as follows;

BASE[s] + CODE[c] = t, CHECK[t] = c. (2)

In ODA, when BASE[s] = BASE[s′] (s 6= s′), character c from parent nodes s
and s′ can traverse to the same child node t. Therefore, CHECK[t] stores the
parent node number. However, as CDA stores character c in CHECK[t], the
following equation needs to be satisfied in all pairs of internal nodes (s, s′);

BASE[s] 6= BASE[s′]. (3)

The retrieval speed of CDA is the same as ODA. A character is stored in
CHECK, that is to say, CHECK elements is always represented by log σ bits.
BASE size is the same as ODA. The space usage of CDA is (n+m) log (n+m)+
(n+m) log σ bits. In general, CDA is more compact than ODA because log (n+m) >
log σ.

Example 4. In Fig. 4, suppose searching for the keyword “ba”. First, the arc

A compression method of double-array structures using linear functions 7

Fig. 4. Trie representation of CDA for keyword set K.

from root node 0 to node 2 with ‘b’ is established by BASE[0] + CODE[‘b’] =
0 + 2 = 2, CHECK[2] = ‘b’. In the same manner as the above-mentioned arc,
arcs with ‘a’ and ‘#’ are established by BASE[2] + CODE[‘a’] = 4 + 1 = 5,
CHECK[5] = ‘a’ and BASE[5] + CODE[‘#’] = 10 + 0 = 10, CHECK[10] = ‘#’.

3.3. Construction algorithm for double-array

When the double-array is constructed, the node numbers are determined with
BASE values and CODE values. That is to say, determining the node numbers
is the same as determining BASE values. Suppose determining BASE value for
node s ≥ 0. Algorithm 1 shows function XCheck(A) to determine BASE[s]
(A is a character set of arcs from s and A, BASE[s] := XCheck(A)). Function
XCheck(A) returns minimum base such that is empty(base+CODE[c]) = true
for all characters c ∈ A (base+CODE[c] ≥ 0). CDA satisfies is used base(base) =
false. Functions is empty and is used base are explained as follows;

– is empty(s) returns true if node number s is unused, that is to say, element
s of the double-array is empty, otherwise returns false.

– is used base(base) returns true if BASE value base is used, otherwise returns
false.

When BASE values are determined, the double-array seeks empty elements
(unused node numbers). In the original method, empty elements are sought from
the head element sequentially (Fig. 5a). When the double-array is constructed
with a large keyword set, the construction speed becomes extremely slow. Morita
et al. presented methods called skip and link methods in order to speed up the
construction (Morita et al, 2001; Morita et al, 2004). The skip method seeks only
the rear part of the double-array because the number of empty elements is very
small in the front part (Fig. 5b). The skip method determines the start position
called skip head for seeking the rear part as the follow;

skip head := da size · skip rate, (4)

where da size denotes the number of double-array elements and skip rate <
1.0. The skip method requires to determine an appropriate parameter skip rate

8 S. Kanda et al.

Fig. 5. Examples for seeking empty elements.

because the number of empty elements and the construction speed are in the
relation of trade-off.

The link method uses a linked-list called empty-list to link empty elements.
The empty-list provides the next empty element, and the link method can seek
only empty elements (Fig. 5c). Function XCheck uses the empty-list. The fol-
lowing variables and function are required to use the empty-list.

– empty head is minimum node number s with is empty(s) = true.

– cmin ∈ A is a character such that CODE[cmin] is the minimum for all charac-
ters in A.

– next empty(s) returns a minimum node number u such that is empty(u) =
true and u > s.

Because the link method does not cause the empty elements increase, it is very
practicable. Moreover, the construction speed becomes faster by using the hybrid
between skip and list methods (Fig. 5d).

Algorithm 1. XCheck(A): A is a character set.

1: t := empty head
2: repeat
3: base := t− CODE[cmin]
4: if is used base(base) = true then . For CDA
5: t := next empty(t)
6: continue
7: end if
8: flg := true
9: for all c ∈ A do

10: if is empty(base+ CODE[c]) = false then
11: flg := false
12: break
13: end if
14: end for
15: t := next empty(t)
16: until flg = true
17: return base

A compression method of double-array structures using linear functions 9

Fig. 6. Examples of scatter diagrams for conventional method and DALF.

The loop from line 2 to line 16 examines appropriate BASE value base such
that is empty(base+ CODE[c]) = true for all characters c ∈ A. Because CDA
requires lines 4 and 7 to satisfy Equation (3), there can be more empty elements
in CDA than in ODA. The construction speed of CDA is slower than that of
ODA.

4. Double-array using linear functions

4.1. Outline

The double-array provides fast traversal at time complexity of O(1). However,
BASE array stores values corresponding to destination node numbers, and each
BASE element requires log (n+m) bits. In other words, BASE array causes
the double-array size increase. This section proposes Double-Array using Linear
Functions (DALF). DALF compresses the BASE element from log (n+m) bits
to 0 < x < log (n+m) bits. Main compression approaches of DALF are as
follows;

Step 1: Define linear function f(s) with node number s.

Step 2: Determine BASE[s] near linear function f(s).

Step 3: Use BASE[s]− f(s) as new BASE value for DALF.

In this paper, the new BASE array for DALF is called DBASE. Fig. 6 shows
examples of scatter diagrams which have node numbers on the x-axis and BASE
values on y-axis. Fig. 6a is the scatter diagram for conventional methods such as
ODA and CDA. Fig. 6b is the scatter diagram for DALF. DALF is constructed
by determining BASE values near linear function f(s) and using relative values
with linear function f(s) instead of BASE values. Therefore, DBASE values
become smaller than BASE values. When Step 2 determines BASE[s] such that
BASE[s]− f(s) is represented by x bits for all nodes s, DBASE element can be
represented by x bits.

The approaches have the problem that BASE[s] − f(s) can not be repre-
sented by x bits for a large keyword set. The problem is posed because CDA

10 S. Kanda et al.

satisfies Equations (2) and (3). When BASE[s] − f(s) is not represented by x
bits, it is necessary to reconstruct DALF by redetermining linear function f(s)
and all BASE values. However, it is difficult to redetermine appropriate linear
function f(s), and the construction speed becomes slow. Therefore, this method
divides the double-array elements into blocks which are composed of bsize ele-
ments, and defines linear function fb(s) for block b (b is a block number which is
computed by bs/bsizec). When BASE[s]− fb(s) is not represented by x bits, we
only need to reconstruct DALF for block b: to redetermine linear function fb(s)
and BASE values in block b. Furthermore, we can easily determine appropriate
linear function fb(s).

As DBASE values and linear function fb(s) are used instead of BASE values,
Equation (2) is changed for DALF as follows;

DBASE[s] + bfb(s)c+ CODE[c] = t, CHECK[t] = c. (5)

When fb(s) is calculated with integers, fb(s) is calculated as bfb(s)c in following
equations. However, the floor functions are omitted for legibility. BASE value
is represented by the following equation because Equation (5) is the same as
Equation (2).

BASE[s] = DBASE[s] + fb(s). (6)

In the same manner as Equation (3), the following equation needs to be satisfied
in all pairs of internal nodes (s, s′);

DBASE[s] + fb(s) 6= DBASE[s′] + fb′(s
′), (7)

where b and b′ are computed by bs/bsizec and bs′/bsizec, respectively. fb(s) is
a linear function with node number s, and it is represented by the following
equation;

fb(s) = abs+ bb. (8)

DALF provides the double-array by using DBASE and linear function fb(s).
DALF determines BASE[s] such that BASE[s] − fb(s) is represented by x bits
for all nodes s. Therefore, the space usage of DALF is (n + m)(x + log σ) bits.
DALF is more compact than CDA because x < log (n+m).

Example 5. Fig. 7 shows DALF for keyword set K. DBASE values are smaller
than BASE values of Fig. 4 because of DBASE[s] = BASE[s] − fb(s). BASE
values are restored by Equation (6). For s = 9, BASE[9] = DBASE[9]+bf2(9)c =
DBASE[9] + ba2 · 9 + b2c = 0 + b0.25 · 9 + 13.00c = 15.

4.2. Definition for construction method

We discuss definitions for DALF by using Tb which denotes an interval of node
numbers traversed from block b. Tb has fields min and max, where Tb.min and
Tb.max denote the minimum and maximum node numbers traversed from block
b, respectively. In other words, Tb is represented as follows;

Tb = [Tb.min, Tb.max].

Because Tb is an interval, it can include unused node numbers. Tb is not defined
when block b does not include internal nodes, and the Tb is used as ∅. Moreover,

A compression method of double-array structures using linear functions 11

Fig. 7. Trie representation of DALF for keyword set K (bsize = 4).

the following set is defined for discussions;

T0···b :=

b⋃
k=0

Tk.

The following equation holds because the first block b = 0 always includes a root
node.

T0···b 6= ∅.
To denote the minimum and maximum indices in block b, s minb and s maxb

are used. That is to say, [s minb, s maxb] denotes the interval of indices in block
b, and the following equations hold;

s minb = b · bsize, s maxb = (b+ 1) · bsize− 1.

In this paper, a construction of the double-array for each block indicates a
determination of BASE values for each block in order of increasing block num-
ber step by step. After T0···b−1 is determined, BASE values in block b > 0 are
determined. To construct DALF for each block efficiently, BASE values are de-
termined by obeying the follows;

Definition 1. T0···b−1.max < Tb.min (0 < b).

Definition 2. For any node with a non-zero block number, its child nodes have
strictly larger block numbers.

In this regard, we exclude the case that block b does not include an internal
node. When Definition 1 is obeyed, the following equation holds;

Tb ∩ Tb+1 = ∅. (9)

Because of Definition 1, we can easily reconstruct DALF because we only need
to initialize BASE[s minb, s maxb] and CHECK[Tb.min, Tb.max] when we begin
to reconstruct DALF in block b. Moreover, we can simply define linear function
fb(s) without depending on nodes in other blocks. In Section 4.3, Equation (9)
is well used when linear function fb(s) is defined. On the other hand, Definition
2 is obeyed in s minb+1 ≤ Tb.min (b > 0) to determine BASE values of each
block step by step. However, Definition 2 omits the first block b = 0 because the
first block consists of only a root node when the first block obeys Definition 2.

12 S. Kanda et al.

Fig. 8. Examples of scatter diagram when Definitions 1 and 2 are obeyed.

Therefore, DALF requires distinct construction methods for the first block and
the others. Fig. 8 shows the scatter diagram such as Fig. 6 when Definitions 1
and 2 are obeyed. The details of Fig. 8 are shown in Section 4.3.

To discuss definitions for DALF, we define the following equation;

child headb :=

{
0 (b = 0)

max(T0···b−1.max+ 1, s minb+1) (b > 0),
(10)

where max returns the maximum value in the arguments. When node number
t traversed from block b is determined such that child headb ≤ t, Definitions 1
and 2 are obeyed. In this paper, child headb is very important because it is used
in the definition of linear function and so on.

4.3. Definition of linear function

DALF divides the double-array elements into blocks which are composed of bsize
elements, and constructs the double-array for each block like Fig. 8. BASE values
are determined near linear function fb(s) to represent DBASE values by x bits.
DALF defines linear function fb(s) as the line through point (s minb, child headb)
and an increasing linear function. The definitions of slope ab and y-intercept bb
are shown in this subsection. However, suppose that block b includes internal
nodes.

When linear function fb(s) is determined, it is important to determine BASE
values in block b near linear function fb(s). Let Bb be the interval of BASE values
in block b. When BASE values in block b are determined near linear function
fb(s),

[child headb, s maxb] ' Bb.

Because we can consider BASE[s] + CODE[c] = t as BASE[s] ' t in n� σ, the

A compression method of double-array structures using linear functions 13

equation holds;

Bb ' Tb.

That is to say, the equation holds;

[child headb, fb(s maxb)] ' Tb. (11)

If slope ab is too large, fb(s maxb) becomes too big and |Tb| increases. As a result,
Tb includes many unused node numbers. If slope ab is too small, |Tb| decreases
and we can not determine BASE values in block b near linear function fb(s).
When Tb does not include unused node numbers and we can determine BASE
values in block b near linear function fb(s), the slope ab is the best parameter.
Suppose that Tb does not include unused node numbers, the equation holds;

|Tb| = total degreeb, (12)

where total degreeb denotes the total degree of nodes in block b. Because Equa-
tion (9) holds by obeying Definition 1, Equation (12) holds. From Equation (11),
linear function fb(s) becomes appropriate in

|[child headb, fb(s maxb)]| = total degreeb.

Therefore, slope ab is defined as following equation;

ab :=
|[child headb, fb(s maxb)]|

bsize
=
total degreeb

bsize
(b > 0). (13)

Because of Definition 2, total degreeb is not changed after linear function
fb(s) is determined. On the other hand, total degree0 can not be calculated
because Definition 2 omits the first block b = 0. Thus, we define a0 by using the
average degree in the trie. Let ave degree be the average degree of internal nodes
in the trie, we consider total degree0 as ave degree · bsize. Slope a0 is defined by
the follow equation;

a0 :=
ave degree · bsize

bsize
= ave degree. (14)

Example 6. In Fig. 7, total degree1 = 4 because degrees of node 4, 5, 6 and 7
are 1, 2, 0 and 1, respectively. Therefore, a1 = total degree1/bsize = 4/4 = 1.00.

Y-intercept bb is defined by using slope ab and the point (s minb, child headb).
From Equation (8), y-intercept bb is defined as the follow equation;

bb := child headb − ab · s minb. (15)

Example 7. In b = 1 of Fig. 7, child head1 = max(T0.max + 1, s min2) =
max(9 + 1, 8) = 10 because the traversal from node 3 to node 9 is defined.
Therefore, b1 = child head1 − a1 · s min1 = 10− 1.00 · 4 = 6.00.

4.3.1. Reconstruction

If DALF can not determine BASE[s] that BASE[s] − fb(s) is represented by x
bits, it is necessary to redetermine BASE values in block b after slope ab increases
and Tb expands. Slope ab is redetermined by the following equation;

ab := a′b + gain · rb, (16)

14 S. Kanda et al.

where gain is the addition value for slope ab, rb is the number of reconstruction
in block b and a′b is the initial parameter determined by Equation (13) or Equa-
tion (14). If parameter gain is too large, Tb expands too much and the number
of empty elements in block b increases. If parameter gain is too small, Tb ex-
pands little and rb increases. As a result, the construction speed becomes slow.
Therefore, parameter gain needs to be defined as an appropriate value.

Furthermore, we give the proof that the reconstruction using Equation (16)
can always terminate for all tries. Here, the upper bound of rb is shown by
discussing the upper bound of slope ab. To discuss the upper bound of slope ab,
suppose the following cases;

Case 1. In terms of the number of trie nodes and the size of DBASE element,
the worst cases for block b are shown the follows;

–Block b does not include an unused node number, and the nodes are all internal
nodes.

–The degree of each node is σ, where σ is the maximum degree.

–x = 1 bit, that is to say BASE[s] = fb(s).

As Case 1 is the worst case in DALF, the slope ab for Case 1 is the upper bound.
In Case 1, each node has σ child nodes, and the number of internal nodes in
block b is bsize. When linear function fb(s) is ignored, the following equation
holds about Tb;

|Tb| = bsize · σ. (17)

Because node numbers can be determined freely without depending on nodes in
other blocks from Equation (9), the child node numbers traversed from block b
are determined in consecutive. Hence, Equation (17) holds. As bsize · σ is the
maximum value of |Tb| for all tries, the slope ab is the upper bound when linear
function fb(s) satisfies Equation (17) in BASE[s] = fb(s). When BASE values
are determined in order of increasing node number, the BASE values satisfying
Equation (17) are shown as follows;

BASE[s minb + i] = child headb + i · σ (0 ≤ i < bsize). (18)

The linear function fb(s) satisfies Equation (18) in BASE[s] = fb(s) when slope
ab and y-intercept bb are defined as follows;

ab = σ, bb = child headb − s minb · σ. (19)

From Equation (19), the upper bound of slope ab is σ, and the upper bound of
rb is shown as the follow;

rb =

⌈
σ − a′b
gain

⌉
(20)

The discussion shows that the reconstruction can always terminate in the
worst case such as Case 1. In Equation (20), values σ, a′b and gain do not depend
on the number of trie nodes. Therefore, the reconstruction using Equation (16)
can always terminate for an exceedingly large trie.

A compression method of double-array structures using linear functions 15

Fig. 9. An example for ranges of BASE values in block b.

4.4. Interval of BASE values

DALF represents BASE[s] − fb(s) by x bits for all nodes s in order to repre-
sent DBASE[s] by x bits. This subsection shows intervals of BASE values when
DBASE values are represented by x bits. The interval of BASE[s] is defined by
the following equation;

BASE[s] ∈ (Ms ∪ Ls). (21)

Fig. 9 shows an example for intervals of BASE values in block b.
Ms and Ls are intervals of BASE values; higher and lower BASE values than

linear function fb(s) are Ms and Ls, respectively. However Ls includes fb(s). Ms

and Ls are adjusted by using parameter α (0 ≤ α < 2x − 1). Ms is represented
as the following equation;

Ms = {y | fb(s) < y < fb(s) + 2x − 1− α}. (22)

Because DALF requires to represent empty elements of DBASE such as DBASE[6]
in Fig. 7, Ms does not include fb(s) + 2x − 1− α. In other words, the maximum
value of DALF is used to represent empty elements. Ls is represented as the
following equation;

Ls = {y | fb(s)− α ≤ y ≤ fb(s)}. (23)

In terms of values in Ls smaller than child headb, many unusable BASE
values can be included because of the following reasons;

– To obey Definitions 1 and 2, DALF determines node number t traversed from
block b such that child headb ≤ t. Because BASE[s] + CODE[c] = t from
Equation (2), child headb ≤ BASE[s] + CODE[c]. From the equation, BASE
values smaller than child headb − CODE[c] can not be used in block b.

– When BASE values smaller than child headb are used in block b′ < b, the
BASE values can not be used in block b.

Therefore, Ls can include many unusable values when α is big and |Ls| is large.

16 S. Kanda et al.

On the other hand, when |Ls| decreases with decreasing α, BASE values become
big and |Tb| becomes large, that is to say, the number of empty elements increases.
Therefore, parameter α requires to be defined as appropriate value.

5. Algorithms for DALF

5.1. Retrieval algorithm

Function Retrieve(str) in Algorithm 2 searches keyword str on DALF. The
function returns true if str is found, otherwise returns false. When a new
method is compared with conventional methods, one difference in their retrieval
algorithms is calculation of a destination node number. str[k] denotes the k-th
character for str, and len(str) denotes the length of keyword str.

Algorithm 2. Retrieve(str): str is a keyword such that str[len(str)] = ‘#’.

1: s := 0 . a root node
2: for k := 1 to len(str) do
3: t := DBASE[s] + fb(s) + CODE[str[k]] . b = bs/bsizec
4: if CHECK[t] 6= str[k] then
5: return false
6: end if
7: s := t
8: end for
9: return true

The loop from line 2 to line 8 traverses arcs with k-th character of keyword
str. In line 3, destination node t from node s with character str[k] is calculated
by Equation (5). If the arc does not exist, the function returns false in line 5.
If the function can traverse nodes with str, the function returns true in line 9.

Example 8. Suppose searching for the keyword “ba” in Fig. 7. This case is
the same as the call of function Retrieve with the argument str = “ba#”.
First, the arc from root node 0 to node 2 with str[1] = ‘b’ is calculated by
DBASE[0] + f0(0) + CODE[‘b’] = 0 + 0 + 2 = 2, CHECK[2] = ‘b’ in lines 3 and
4. In the same manner as the above-mentioned arc, arcs with str[2] = ‘a’ and
str[2] = ‘#’ are established by DBASE[2] + f0(2) + CODE[‘a’] = 1 + 3 + 1 = 5,
CHECK[5] = ‘a’ and DBASE[5] + f1(5) + CODE[‘#’] = 0 + 11 + 0 = 11,
CHECK[11] = ‘#’. In line 9, the function returns true.

5.2. Construction algorithm

Construction algorithms for DALF are presented in this subsection. In the al-
gorithms, after all keywords are registered to the trie called a base trie, node
numbers of a new trie for DALF are determined. The base trie is implemented
by a link form or a matrix form. The algorithms construct DALF for each block
step by step, and determine node number s for the new trie that DBASE[s] is
represented by x bits for all nodes s. Definitions 1 and 2 are obeyed.

The base trie is denoted by BT and has the following functions;

– BT.root() returns a root node number in base trie BT .

A compression method of double-array structures using linear functions 17

– BT.labels(v) returns an arc’s characters set from node v in base trie BT .

– BT.child(v, c) returns a child node number traversed from parent node v with
c in base trie BT .

BT is traversed by using min-priority queue q with 2-tuple (v, s), where v and
s are node numbers of BT and the new trie, respectively. Min-priority queue q
gives priority to node number s of the new trie. That is to say, the algorithms
traverse BT in order of increasing s. q has the following functions;

– q.empty() returns true if q is empty, otherwise returns false.

– q.enque((v, s)) enqueues (v, s).

– q.deque() dequeues (v, s).

In the algorithms, BT and q are used globally.
In the construction algorithms, function YCheckb in Algorithm 3 is invoked

when BASE value in block b is determined. The functions and cmin in Section
3.3 are used. The following empty headb is used instead of empty head;

– empty headb is minimum node number s such that is empty(s) = true and
child headb ≤ s.

Function YCheckb(A, lower) returns minimum BASE value base in block b such
that base ≥ lower and is empty(base + CODE[c]) = true (c ∈ A). Moreover
is used base(base) = false.

Algorithm 3. YCheckb(A, lower): A is a character set, lower is a lower bound
of the BASE value.

1: t := empty headb
2: repeat
3: base := t− CODE[cmin]
4: if base < lower or is used base(base) = true then
5: t := next empty(t)
6: continue
7: end if
8: flg := true
9: for all c ∈ A do

10: if is empty(base+ CODE[c]) = false then
11: flg := false
12: break
13: end if
14: end for
15: t := next empty(t)
16: until flg = true
17: return base

With the same technique as function XCheck, function YCheckb uses the
empty-list. In DALF, because node numbers smaller than child headb are not
used to obey Definitions 1 and 2, YCheckb only needs to seek subsequent empty
element of child headb by using empty headb (Fig. 10). This method is equal to
the hybrid method in Fig. 5d. The following construction algorithms is complex
when compared to ODA and CDA, but the construction speed is fast because
YCheckb provides the hybrid method naturally.

The construction algorithms consist of two main parts for the first block and

18 S. Kanda et al.

Fig. 10. An example for seeking of empty elements for DALF

for the other blocks. To construct the new trie for the first block 0, function Con-
structFirstBlock in Algorithm 4 is invoked. Function ConstructFirst-
Block begins to construct with a root node, and the new trie is constructed in
order of increasing node number for the new trie by using q. When the function
finishes to determine BASE values in the first block, the function returns true.
If the BASE value does not satisfy Equation (21), the function returns false.
In the algorithm, Ls.min denotes the minimum value in Ls.

Algorithm 4. ConstructFirstBlock()

1: q.enque((BT.root(), 0))
2: while q.empty() = false and bs/bsizec = 0 for q[0] = (v, s) do
3: (v, s) := q.deque()
4: base := YCheck0(BT.labels(v), Ls.min)
5: if base 6∈ (Ms ∪ Ls) then
6: return false
7: end if
8: DBASE[s] := base− f0(s)
9: for all c ∈ T.labels(v) do

10: t := base+ CODE[c]
11: CHECK[t] := c
12: if c 6= ‘#’ then
13: q.enque((T.child(v, c), t))
14: end if
15: end for
16: end while
17: return true

In line 1, root node numbers are enqueued to begin the construction. The
loop from line 2 to line 16 traverses BT and constructs the new trie in the first
block. Line 4 determines BASE value by using YCheck. If the BASE value does
not satisfy Equation (21) in line 5, line 6 returns false. That is to say, DBASE
value determined in line 8 is represented by x bits. The loop from line 9 to line 15
calculates the new node number traversed from s and determines new CHECK
values. Moreover, child node numbers are enqueued to traverse BT .

On the other hand, function ConstructBlock in Algorithm 5 is invoked to
construct the new trie for block b > 0. Function ConstructBlock(P) receives
set P which stores node numbers (v, s) in block b, and constructs the new trie
in block b.

Algorithm 5. ConstructBlock(P): P is a set which stores node numbers in
block b.

1: Q := ∅
2: for all (v, s) ∈ P do

A compression method of double-array structures using linear functions 19

3: base := YCheckb(T.labels(v), Ls.min) . b = bs/bsizec
4: if base 6∈ (Ms ∪ Ls) then
5: return false
6: end if
7: DBASE[s] := base− fb(s)
8: for all c ∈ T.labels(v) do
9: t := base+ CODE[c]

10: CHECK[t] := c
11: if c 6= ‘#’ then
12: Append (T.child(v, c), t) to Q
13: end if
14: end for
15: end for
16: q.enque((v, s)) for all elements (v, s) ∈ Q
17: return true

In function ConstructBlock, set Q with (v, s) are used to store node
numbers traversed from block b temporarily. The loop from line 2 to line 15
constructs the new trie in block b by traversing nodes in P . In the same manner as
function ConstructFirstBlock, DBASE and CHECK values are determined.
On the other hand, node numbers traversed from block b are appended to Q in
line 12. Because of line 12, we do not require to remove the node numbers from
q when BASE value does not satisfy Equation (21) in line 4. When all BASE
values in block b satisfy Equation (21), line 16 enqueues the node numbers by
using Q, and line 17 returns true.

Procedure Construct in Algorithm 6 constructs the new trie for each block
by using functions ConstructFirstBlock and ConstructBlock. In pro-
cedure Construct, total degreeb and ave degree are given from BT . Variable
da size denotes the number of elements of DALF like Equation (4). All elements
and q are initialized in advance.

Algorithm 6. Construct()

1: child head0 := 0
2: Determine a0 and b0 using Equations (14) and (15), respectively
3: r0 := 0
4: while ConstructFirstBlock() = false do
5: Initialize all DBASE and CHECK elements and q
6: r0 := r0 + 1
7: Update a0 using Equation (16)
8: end while
9: while q.empty() = false do

10: P := ∅
11: b := bs/bsizec for q[0] = (v, s)
12: while q.empty() = false and bs/bsizec = b for q[0] = (v, s) do
13: (v, s) := q.deque() and append (v, s) to P
14: end while
15: child headb := max(da size+ 1, s minb+1)
16: Determine ab and bb using Equations (13) and (15), respectively
17: rb := 0
18: while ConstructBlock(P) = false do
19: Initialize DBASE[s minb, s maxb] and CHECK[child headb, da size]

20 S. Kanda et al.

Table 1. Theoretical observations.

Method Time complexity for retrieval Space usage [bits]

ODA k 64(n+m) + 8σ
CDA k 40(n+m) + 8σ
DALF k (x+ 8)(n+m) + 64(n+m)/bsize + 8σ
LOUDS kσ 10.75n+ 1.375

20: rb := rb + 1
21: Update ab using Equation (16)
22: end while
23: end while

In lines 1 to 8, the new trie in the first block 0 is constructed. The loop from
line 4 to line 8 repeats until BASE values in block 0 satisfies Equation (21).
When the construction fails, slope a0 is updated using Equation (16). The loop
always terminates from Equation (20). The loop from line 9 to line 23 constructs
the new trie for each block b > 0 by using function ConstructBlock. The loop
from line 12 to line 14 moves node numbers in block b from q to P . In line 15,
da size is the same as T0···b−1.max. The loop from line 18 to line 22 constructs
the new trie for block b by using P . In the same manner as the first block, slope
ab is updated and the new trie is reconstructed if BASE values in block b does
not satisfy Equation (21). In line 19, [Tb.min, Tb.max] ⊆ [child headb, da size]
because child headb ≤ Tb.min and da size = Tb.max. Moreover, T0···b.max <
child headb because of Definition 1. Therefore, CHECK[child headb, da size] in-
cludes CHECK values traversed from only block b, and we can easily initialize
CHECK values because of constructing DALF for each block.

6. Evaluations

6.1. Theoretical observations

Table 1 shows the theoretical observations for ODA, CDA, DALF and LOUDS.
The retrieval algorithm among ODA, CDA and DALF are very similar. The time
complexities of retrieval for them are O(k), where k denotes the length of the
input keyword. As all characters can be checked, the time complexity of LOUDS
is O(kσ), where σ denotes the number of character kinds, that is to say, the
maximum degree in the trie. Therefore, LOUDS is slower than other methods.

In terms of the space usage, we observe the allocations in Section 6.2. n and m
denote the number of trie nodes and empty elements, respectively. Table 2 shows
the information about the keyword sets for experiments in Section 6.2. In Table
2, the maximum number of trie nodes was greater than 224 and less than 232

even in an extremely large keyword set such as English Wikipedia. Therefore,
an integer with 32 bits is sufficient to represent node numbers, and suppose
that each integer in the methods is represented by 32 bits. Because multibyte
characters such as Kanji were used as byte strings, σ ≤ 28, and suppose that
each character can be represented by 8 bits.

In ODA, BASE and CHECK elements are represented by 32 bits each. In
CDA, BASE and CHECK elements are represented by 32 and 8 bits, respectively.
In DALF, DBASE and CHECK elements are represented by x (0 < x < 32)
and 8 bits, respectively. Because we allocated 32 bits each to ab and bb, each

A compression method of double-array structures using linear functions 21

Table 2. Information about the keyword sets and the tries.

WordNet URL Japanese Wiki English Wiki

Information about the keyword set
File size [MB] 4.02 12.10 32.30 227.19
Number of keywords 147,306 219,516 1,518,205 11,519,354
Total length 1,692,291 12,306,787 32,357,551 226,714,224
Maximum length 71 880 253 255
Minimum length 1 14 1 1
Average length 11.48 56.06 21.31 19.68

Information about the tries
Number of trie nodes 879,563 5,936,065 16,590,101 110,962,030

linear function fb(s) requires 64 bits. As the number of blocks is calculated by
(n+m)/bsize7 , the total space usage of linear functions fb(s) is 64(n+m)/bsize
bits. When x is small and bsize is big, the space usages of DBASE and fb(s)
decrease, but m can increase. x, bsize and m are evaluated by Section 6.2. The
number of CODE elements is σ and CODE array requires 8σ bits. In terms
of LOUDS, the space usage is calculated from Tx-library8 which is a popular
open-source straightforward implementation of the trie using LOUDS. As noted
in Section 2.2, LBS and LABEL requires 2n + 1 and 8n bits, respectively. In
addition, the extra space for rank/select operations requires 0.375(2n+ 1) bits.
The total space usage of LOUDS is 10.75n+ 1.375 bits. The observation results
show that LOUDS is more compact than ODA and CDA. The space usage of
DALF depends on x, bsize and m.

6.2. Experimental observations

ODA, CDA and DALF were implemented with C++, and Tx-library was used
for LOUDS. Experiments for space usage, retrieval speed and construction speed
were executed on the following PC; Quad-Core Intel Xeon 2 x 2.4 GHz (L2 cache:
256 KB). The following keyword sets were used;

– English words of WordNet-2.3.09

– URL set

– Page titles of Japanese Wikipedia10

– Page titles of English Wikipedia11

Table 2 shows information about the keyword sets. Multibyte characters such
as Kanji in UTF-8 were used as byte strings. The numerical codes of characters
were determined in order of descending appearance frequency in the keyword
sets (Liu et al, 2011). The allocations are the same as Table 1. All methods are
constructed via a link-form trie.

7 Strictly speaking, the number of blocks is d(n + m)/bsizee, but the ceil function is omitted
for simplicity. Likewise, the extra space for rank/select operations is calculated in LOUDS.
8 Tx: Succinct Trie Data structure. https://code.google.com/p/tx-trie/
9 WordNet 3.0. http://wordnetcode.princeton.edu/3.0/WordNet-3.0.tar.gz
10 jawiki dump progress on 20150118. http://dumps.wikimedia.org/jawiki/20150118/
jawiki-20150118-all-titles-in-ns0.gz
11 enwiki dump progress on 20150205. http://dumps.wikimedia.org/enwiki/20150205/
enwiki-20150205-all-titles-in-ns0.gz

22 S. Kanda et al.

First, Fig. 11 shows experimental results for parameters x, bsize, α and gain
in terms of the space usage, construction time and the number of reconstruction.
We conducted the experiments by changing parameters and constructing DALF.
We set x = 8, 16. To compute b = bs/bsizec at high speed by using bit-shift, we
set bsize as a power of 2 ranging in [32, 4096]. We set α = 64, 128, 192 in x = 8
and α = 16384, 32768, 49152 in x = 16. We set gain = 1.0, 1.5. The number of
reconstruction in x = 16 was almost 0, and there were rarely different among the
results. Therefore, Fig. 11 shows only the result for α = 32768 and gain = 1.0
in x = 16.

Totally, the performances in x = 8 rapidly decrease from bsize = 512, 1024
because the number of reconstruction rapidly increases, but the performances in
x = 16 do not decrease much because the number of reconstruction is almost
0. From Equation (20), the number of reconstruction for each block decreases
with increasing gain. However, the number of reconstruction for total blocks can
increase with increasing gain because the number of elements also increases. In
terms of the space usage, x = 8 is about 70% of x = 16 in bsize = 256, 512.
α = 128, 192 becomes relatively small when bsize ≤ 128 and x = 8, but α = 64
becomes relatively small when 1024 ≤ bsize and x = 8. In 1024 ≤ bsize, gain =
1.0 provides small space usages. The construction times in bsize = 256, 512 are
largely unchanged among the parameters. In conclusion, DALF provides a good
performance when x = 8 and bsize = 256, 512. In terms of α and gain in the
case, the performances do not change in 64 ≤ α ≤ 192 and 1.0 ≤ gain ≤ 1.5.

Second, Fig. 12 shows experimental results of comparison among ODA, CDA,
DALF and LOUDS in terms of the space usage, retrieval time and construction
time. DALF were examined in x = 8, 16 bits. We set bsize = 512, α = 128, 32768
and gain = 1.0. ODA was constructed by the list method in Fig. 5c, but CDA
was constructed by the hybrid method in Fig. 5d because the construction speed
becomes extremely slow in the list method. We set skip rate = 0.98 for the hy-
brid method in Equation (4). We conducted the experiments for the raw keyword
sets and the 10-90% subsets. 100% on x-axis denotes the raw keyword sets.

In terms of the space usage, we can see that DALF is valid to reduce space
usage for the double-array. In x = 16, the space usage is about 63-65% when
compared to CDA. In x = 8, the space usage is about 44-45% when compared
to CDA. The retrieval speed of DALF is about 2.6-3.5 times slower than ODA
and CDA because the traversal of DALF requires more computations. However,
DALF can retrieve about 9-14 times faster than LOUDS because DALF keeps
the features of the double-array. When the link method is used, the construction
speed for the double-array methods depends largely on the number of times to
seek empty elements. ODA is faster than other double-array methods because
empty elements are easily used and empty head is frequently updated. On the
other hand, empty head of CDA is infrequently updated and its construction
speed is slow because CDA requires to satisfy Equation (3). When the hybrid
method in Fig. 5d is used, the construction speed becomes fast depending on
skip rate, but the space usage increases with increasing skip rate. The construc-
tion algorithm of DALF is the most complex, but its construction speed becomes
fast like CDA because YCheckb naturally provides the hybrid method.

In detail, we discuss the comparison between CDA and DALF in terms of
the construction speed. Because CDA and DALF are constructed by using the
hybrid method, the construction speeds of CDA and DALF depend on the num-
ber of subsequent elements of skip head or child headb. The construction speed
becomes slower when increasing the number of subsequent elements, but the

A compression method of double-array structures using linear functions 23

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 32 64 128 256 512 1024 2048 4096

Sp
ac

e
us

ag
e

[M
B]

bsize

WordNet

x=8,α=64,gain=1.0
x=8,α=128,gain=1.0
x=8,α=192,gain=1.0

x=8,α=64,gain=1.5
x=8,α=128,gain=1.5
x=8,α=192,gain=1.5

x=16

 0.4

 0.5

 0.6

 0.7

 0.8

 32 64 128 256 512 1024 2048 4096

C
on

st
ru

ct
io

n
tim

e
[s

ec
]

bsize

WordNet

 0

 200

 400

 600

 800

 1000

 1200

 32 64 128 256 512 1024 2048 4096

N
um

be
r o

f r
ec

on
st

ru
ct

io
n

bsize

WordNet

 10

 15

 20

 25

 30

 35

 32 64 128 256 512 1024 2048 4096

Sp
ac

e
us

ag
e

[M
B]

bsize

URL set

 3.5

 4

 4.5

 5

 5.5

 6

 32 64 128 256 512 1024 2048 4096

C
on

st
ru

ct
io

n
tim

e
[s

ec
]

bsize

URL set

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 32 64 128 256 512 1024 2048 4096

N
um

be
r o

f r
ec

on
st

ru
ct

io
n

bsize

URL set

 30

 40

 50

 60

 70

 80

 90

 100

 32 64 128 256 512 1024 2048 4096

Sp
ac

e
us

ag
e

[M
B]

bsize

Japanese Wikipedia Titles

 11

 12

 13

 14

 15

 16

 17

 18

 32 64 128 256 512 1024 2048 4096

C
on

st
ru

ct
io

n
tim

e
[s

ec
]

bsize

Japanese Wikipedia Titles

 0

 5000

 10000

 15000

 20000

 32 64 128 256 512 1024 2048 4096

N
um

be
r o

f r
ec

on
st

ru
ct

io
n

bsize

Japanese Wikipedia Titles

 200

 250

 300

 350

 400

 450

 500

 550

 600

 32 64 128 256 512 1024 2048 4096

Sp
ac

e
us

ag
e

[M
B]

bsize

English Wikipedia Titles

 80

 90

 100

 110

 120

 130

 140

 32 64 128 256 512 1024 2048 4096

C
on

st
ru

ct
io

n
tim

e
[s

ec
]

bsize

English Wikipedia Titles

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 32 64 128 256 512 1024 2048 4096

N
um

be
r o

f r
ec

on
st

ru
ct

io
n

bsize

English Wikipedia Titles

Fig. 11. Experimental results for parameters of DALF. In terms of parts that we can not
see result of the graph, the space usages in x = 8, α = 128, 192 are relatively small except
WordNet, when bsize = 32, 64, 128.

space usage becomes larger when decreasing the number of subsequent elements.
In CDA, the number of subsequent elements is da size · (1.0 − skip rate) from
Equation (4). As da size depends on the size of the trie, the number of subse-
quent elements in CDA increases with increasing the size of the trie. On the other
hand, the subsequent elements in DALF depend on Tb. As the maximum |Tb| is
bsize · σ from Equation (17), the maximum number of the subsequent elements

24 S. Kanda et al.

 0

 1

 2

 3

 4

 5

 6

 7

 10 20 30 40 50 60 70 80 90 100

Sp
ac

e
us

ag
e

[M
B]

Rate of keyword set [%]

WordNet

ODA
CDA

DALF (8 bits)
DALF (16 bits)

LOUDS

 0

 0.5

 1

 1.5

 2

 2.5

 10 20 30 40 50 60 70 80 90 100

R
et

rie
va

l t
im

e
[µ

s
/ k

ey
w

or
d]

Rate of keyword set [%]

WordNet

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 10 20 30 40 50 60 70 80 90 100

C
on

st
ru

ct
io

n
tim

e
[s

ec
]

Rate of keyword set [%]

WordNet

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 10 20 30 40 50 60 70 80 90 100

Sp
ac

e
us

ag
e

[M
B]

Rate of keyword set [%]

URL set

 0

 2

 4

 6

 8

 10

 12

 10 20 30 40 50 60 70 80 90 100

R
et

rie
va

l t
im

e
[µ

s
/ k

ey
w

or
d]

Rate of keyword set [%]

URL set

 0

 5

 10

 15

 20

 25

 30

 35

 10 20 30 40 50 60 70 80 90 100

C
on

st
ru

ct
io

n
tim

e
[s

ec
]

Rate of keyword set [%]

URL set

 0

 20

 40

 60

 80

 100

 120

 140

 10 20 30 40 50 60 70 80 90 100

Sp
ac

e
us

ag
e

[M
B]

Rate of keyword set [%]

Japanese Wikipedia Titles

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 10 20 30 40 50 60 70 80 90 100

R
et

rie
va

l t
im

e
[µ

s
/ k

ey
w

or
d]

Rate of keyword set [%]

Japanese Wikipedia Titles

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 10 20 30 40 50 60 70 80 90 100

C
on

st
ru

ct
io

n
tim

e
[s

ec
]

Rate of keyword set [%]

Japanese Wikipedia Titles

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 10 20 30 40 50 60 70 80 90 100

Sp
ac

e
us

ag
e

[M
B]

Rate of keyword set [%]

English Wikipedia Titles

 0

 1

 2

 3

 4

 5

 6

 10 20 30 40 50 60 70 80 90 100

R
et

rie
va

l t
im

e
[µ

s
/ k

ey
w

or
d]

Rate of keyword set [%]

English Wikipedia Titles

 0

 100

 200

 300

 400

 500

 600

 700

 10 20 30 40 50 60 70 80 90 100

C
on

st
ru

ct
io

n
tim

e
[s

ec
]

Rate of keyword set [%]

English Wikipedia Titles

Fig. 12. Experimental results of comparison among ODA, CDA, DALF and LOUDS. In
retrieval time, ODA and CDA are overlapping, and DALF methods are also overlapping. In
construction time except WordNet, ODA and LOUDS are overlapping, and DALF methods
are also overlapping.

A compression method of double-array structures using linear functions 25

in DALF is bsize · σ which is independent from the size of the trie. In WordNet,
the construction speed of CDA is faster than that of DALF because the size of
the trie is small and the number of the subsequent elements in CDA is small.
However, in other keyword sets, the construction speed of DALF is faster than
that of CDA because the size of the trie is big. Needless to say, the construction
speed of CDA becomes faster by increasing skip rate or fixing the number of
the subsequent elements, but the space usage also becomes big. DALF always
provides a compact trie and a stable and fast construction in bsize = 256, 512. In
the experiments, the construction speed of DALF is about ten times faster than
that of CDA. From the above mentioned, DALF is the most reasonable among
the methods.

7. Conclusion

This paper has presented DALF, a compression method of the double-array by
dividing the elements into blocks and defining linear functions. From theoretical
and experimental observations, it is verified that DALF is more effective than
other double-array methods. DALF reduces the space usage of CDA by up to
about 44%. Moreover, the retrieval speed of DALF is 9-14 times faster than that
of LOUDS. The construction speed of DALF is faster than that of CDA for a
large keyword set. However, we could not compress DALF smaller than LOUDS
in the experiments. The future study will propose a double-array method smaller
than LOUDS.

References

Aho A V, Corasick M J (1975) Efficient string matching: An aid to bibliographic search.
Commun. ACM 18(6): 333–340

Aho A V, Lam M S, Sethi R, et al (2006) Compilers: Principles, Techniques, and Tools (2Nd
Edition). Addison-Wesley Longman Publishing, Boston, MA, USA, Chapters 3 and 4

Aoe J (1989) An efficient digital search algorithm by using a double-array structure. IEEE
Transactions on Software Engineering 15(9): 1066–1077

Aoe J, Morimoto K, Sato T (1992) An efficient implementation of trie structures. Software:
Practice and Experience 22(9): 695–721

Aoe J, Morimoto K, Shishibori M, et al (1996) A trie compaction algorithm for a large set of
keys. IEEE Transactions on Knowledge and Data Engineering 8(3): 476–491

Arroyuelo D, Cnovas R, Navarro G, et al (2010) Succinct Trees in Practice. In: ALENEX, pp.
84–97

Baeza-Yates R A, Gonnet G H (1996) Fast text searching for regular expressions or automaton
searching on tries. Journal of the ACM 43(6): 915–936

Benoit D, Demaine E D, Munro J I, et al (2005) Representing Trees of Higher Degree. Algo-
rithmica 43: 275–292

Brain M, Tharp A (1994) Using tries to eliminate pattern collisions in perfect hashing. IEEE
Transactions on Knowledge and Data Engineering 6(2): 239–247

Delpratt O, Rahman N, Raman R (2006) Engineering the louds succinct tree representation.
In: Proceedings of WEA 2006, pp. 134–145

Fredkin E (1960) Trie memory. Commun. ACM 3(9): 490–499
Fu J, Hagsand O, Karlsson G (2007) Improving and analyzing LC-trie performance for IP-

address lookup. Journal of Networks 2(3): 18–27
Fuketa M, Kitagawa H, Ogawa T, et al (2014) Compression of double array structures for fixed

length keywords. Information Processing & Management 50(5): 796–806
Huang K, Xie G, Li Y, et al (2011) Offset addressing approach to memory-efficient IP address

lookup. In: Proceedings IEEE INFOCOM, pp. 306–310

26 S. Kanda et al.

Jacobson G (1989) Space-efficient static trees and graphs. In: 30th Annual Symposium on
Foundations of Computer Science, pp. 549–554

Jansson J, Sadakane K, Sung W (2007) Ultra-succinct representation of ordered trees. In:
ACM-SIAM Symposium on Discrete Algorithms, pp. 575–584

Liu H, Nuo M, Ma L, et al (2011) Compression methods by code mapping and code dividing
for chinese dictionary stored in a double-array trie. In: IJCNLP, pp. 1189–1197

Morita K, Fuketa M, Yamakawa Y, et al (2001) Fast insertion methods of a double-array
structure. Software: Practice and Experience 31(1): 43–65

Morita K, Atlam E, Fuketa M, et al (2004) Fast and compact updating algorithms of a double-
array structure. Information Sciences 159(12): 53–67

Munro J, Raman V (2001) Succinct Representation of Balanced Parentheses and Static Trees.
SIAM Journal on Computing 31: 762–776

Navarro G (2004) Indexing text using the zivlempel trie. Journal of Discrete Algorithms 2(1):
87–114

Peterson J (1980) Computer programs for spelling correction: An experiment in program de-
sign. Springer, Berlin Heidelberg, pp. 1–129

Sadakane K, Navarro G (2010) Fully-functional succinct trees. In: Proceedings of the Twenty-
First Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 134–149

Srinivasan V, Varghese G, Suri S, et al (1998) Fast and scalable layer four switching. In: Proceed-
ings of the ACM SIGCOMM ’98 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, pp. 191–202

Yang L, Xu L, Shi Z (2012) An enhanced dynamic hash trie algorithm for lexicon search.
Enterprise Information Systems 6(4): 419–432

Yata S, Oono M, Morita K, et al (2007a) An efficient deletion method for a minimal prefix
double array. Software: Practice and Experience 37(5): 523–534

Yata S, Oono M, Morita K, et al (2007b) A compact static double-array keeping character
codes. Information Processing & Management 43(1): 237–247

Author Biographies

Shunsuke Kanda received B.Sc. degree in information science and
intelligent systems from Tokushima University, Japan, in 2014. He is
currently a master course student at Tokushima University. He is a
student member of the information processing society in Japan. His
research interests are string processing, database engineering and in-
formation retrieval.

Masao Fuketa received B.Sc., M.Sc. and Ph.D. degrees in infor-
mation science and intelligent systems from Tokushima University,
Japan, in 1993, 1995 and 1998, respectively. He had been a research
assistant from 1998 to 2000 in information science and intelligent sys-
tems, Tokushima University, Japan. He is currently an associate pro-
fessor in the department of information science and intelligent systems,
Tokushima University, Japan. He is a member of the information pro-
cessing society in Japan and the association for natural language pro-
cessing of Japan. His research interests are information retrieval and
natural language processing.

A compression method of double-array structures using linear functions 27

Kazuhiro Morita received B.Sc., M.Sc. and Ph.D. degrees in in-
formation science and intelligent systems from Tokushima University,
Japan, in 1995, 1997 and 2000, respectively. He had been a research
assistant from 2006 to 2014 in information science and intelligent sys-
tems, Tokushima University, Japan. He is currently an associate pro-
fessor in the department of information science and intelligent systems,
Tokushima University, Japan. His research interests are sentence re-
trieval from huge text databases, double array structures and binary
search tree.

Jun-ichi Aoe received B.Sc. and M.Sc. degrees in electronic engi-
neering from Tokushima University, Japan, in 1974 and 1976, respec-
tively, and received the Ph.D. degree in communication engineering
from Osaka University, Japan, in 1980. Since 1976, he has been with
Tokushima University. He is currently a professor in the department
of information science and intelligent systems, Tokushima University,
Japan. His research interests are natural language processing, a shift-
search strategy for interleaved LR parsing, a robust method for un-
derstanding NL interface commands in an intelligent command inter-
preter, and trie compaction algorithms for large key sets. He was the
editor of the computer algorithm series of the IEEE Computer Society
Press. He is a member of the association for computing machinery and
the association for the natural language processing of Japan.

Correspondence and offprint requests to: Shunsuke Kanda, Department of Information Science

and Intelligent Systems, Tokushima University, Minamijosanjima 2-1, Tokushima 770-8506,

Japan. Email: shnsk.knd@gmail.com

