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Abstract. A string dictionary is a basic tool for storing a set of strings in many kinds
of applications. Recently, many applications need space-efficient dictionaries to handle
very large datasets. In this paper, we propose new compressed string dictionaries using
improved double-array tries. The double-array trie is a data structure that can im-
plement a string dictionary supporting extremely fast lookup of strings, but its space
efficiency is low. We introduce approaches for improving the disadvantage. From ex-
perimental evaluations, our dictionaries can provide the fastest lookup compared to
state-of-the-art compressed string dictionaries. Moreover, the space efficiency is com-
petitive in many cases.

Keywords: Trie; Double-array; Compressed string dictionaries; Data management;
String processing and indexing

1. Introduction

In the advanced information society, huge amounts of data are represented as
strings such as documents, web pages, URLs, genome data and so on. For that
reason, many researchers have tackled to propose efficient algorithms and data
structures for handling string data. The data structures include a string dic-
tionary for storing a set of strings. It implements mapping strings to identifiers
(basically, integer IDs), that is, it has to support two retrieval operations: lookup
returns the ID of a given string, and access returns the string of a given ID.
As the mapping is very useful for string processing and indexing, the string
dictionary is a basic tool in many kinds of applications for natural language pro-
cessing, information retrieval, semantic web graphs, bioinformatics, geographic
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information systems and so on. On the other hand, recently, there are many real
examples that the size of string dictionaries becomes critical problems for very
large datasets (Mart́ınez-Prieto, Brisaboa, Cánovas, Claude and Navarro, 2016).
That is to say, many applications need compressed string dictionaries.

A popular data structure to implement the string dictionary is a trie (Fredkin,
1960; Knuth, 1998) that is an edge-labeled tree. As strings are registered on
root-to-leaf paths by merging the common prefixes, it contributes to data com-
pression and can support powerful prefix-based operations such as enumeration
of all strings included as prefixes of a given string. The operations can be use-
ful in specific applications such as stemmed searches (Baeza-Yates and Ribeiro-
Neto, 2011) and auto-completions (Bast, Mortensen and Weber, 2008) in natural
language dictionaries.

There are many researches about space-efficient tries. In particular, trie repre-
sentations using succinct labeled trees (Arroyuelo, Cánovas, Navarro and Sadakane,
2010; Benoit, Demaine, Munro, Raman, Raman and Rao, 2005; Munro and Ra-
man, 2001; Navarro and Sadakane, 2014) and XBW (Ferragina, Luccio, Manzini
and Muthukrishnan, 2009) provide good space efficiency. However, their node-
to-node traversals are slow because many bit operations are used for random
memory access, that is, the lookup and access operations become slow. To
solve this problem for static compressed string dictionaries, Grossi and Otta-
viano (2014) present a new data structure inspired in the path decomposition
trie (Ferragina, Grossi, Gupta, Shah and Vitter, 2008). It enables to support fast
traversal by reducing the number of random memory accesses.

As for other state-of-the-art works, Mart́ınez-Prieto et al. (2016) introduce
and practically evaluate static compressed string dictionaries based on some
techniques. In short, the dictionaries based on Front-Cording (Witten, Moffat
and Bell, 1999) provide good performances in time/space tradeoff. Their access
operations are fast especially. The dictionaries based on hashing (Cormen, Leis-
erson, Rivest and Stein, 2009) are good choices if fast lookup is needed. Arz
and Fischer (2014) propose Lempel-Ziv (LZ) compressed string dictionaries that
adapt the LZ78 parsing (Ziv and Lempel, 1978) to lookup and access opera-
tions. The dictionaries are effective for datasets containing many often repeated
substrings.

We focus on a double-array (DA) trie proposed by Aoe (1989). DA is a pop-
ular trie representation supporting the fastest node-to-node traversal. It is used
in many applications at present such as MeCab1, Groonga2 and so on. String
dictionaries using the DA trie can support fast lookup and access, but the scal-
ability is a problem for large datasets because DA is a pointer-based data struc-
ture. Although several compressed DA tries are proposed (Fuketa, Kitagawa,
Ogawa, Morita and Aoe, 2014; Kanda, Fuketa, Morita and Aoe, 2016; Yata,
Oono, Morita, Fuketa, Sumitomo and Aoe, 2007), we cannot adopt them to the
string dictionaries because they cannot support access instead of compression.

This paper proposes a new compressed DA trie supporting fast lookup and
access operations by using different approaches with previous compressed DA
tries. In addition, this paper shows the advantages of our string dictionaries
from experimental evaluations for real datasets. Compared to the original DA
trie, our data structure can implement string dictionaries in half or smaller space.

1 Yet Another Part-of-Speech and Morphological Analyzer at http://taku910.github.io/
mecab/.
2 An open-source fulltext search engine and column store at http://groonga.org/.
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Compared to other state-of-the-art compressed string dictionaries, our dictionary
can provide the fastest lookup. Moreover, the space efficiency is competitive in
many cases.

The rest of the paper is organized as follows. Section 2 provides basic def-
initions and introduces related data structures. Section 3 proposes a new com-
pressed DA trie without losing access. Section 4 improves it to support faster
operations. Section 5 shows experimental evaluations. Section 6 concludes the
paper and indicates our future works. In addition, we provide the source code
at https://github.com/kamp78/cda-tries for the reader interested in further
comparisons.

2. Preliminaries

This section introduces data structures on which our research is related, after
we give basic definitions as follows.

We denote an array A that consists of n elements A[0]A[1] . . . A[n − 1] as
A[0, n), and the array fragment A[i, j+1) that consists of the elements A[i]A[i+
1] . . . A[j] as A[i, j]. Notation (a)2 denotes a binary representation of value a,
and |(a)2| denotes the code length, that is, the bits needed to represent a. For
example, (9)2 = 1001 and |(9)2| = 4. Functions bac and dae denote the largest
integer not greater than a and the smallest integer not less than a, respectively.
For example, b2.4c = 2 and d2.4e = 3. The base of logarithm is 2 throughout the
paper.

2.1. Succinct data structures

Given a bit array B, we define two basic operations: rank(B, i) returns the num-
ber of 1s in B[0, i), and select(B, i) returns the position of the i+1 th occurrence
of 1 in B. Suppose B[0, 8) = [00100110], rank(B, 6) = 2 and select(B, 1) = 5.

As these opearions are at the heart of many compressed data structures,
several practical implementations are proposed (González, Grabowski, Mäkinen
and Navarro, 2005; Kim, Na, Kim and Park, 2005; Okanohara and Sadakane,
2007). Our string dictionaries will use the implementation that Okanohara and
Sadakane (2007) introduce as the verbative. For B[0, n), the verbative supports
rank in O(1) and select in O(log n) using extra o(n) bits.

2.2. String dictionaries and tries

Strings are drawn from a finite alphabet Σ of size σ. A string dictionary is a
data structure that stores a set of strings, S ⊂ Σ∗. Dictionary S supports two
primitive operations:

– lookup(q) returns the ID if q ∈ S.

– access(i) returns the string with ID i ∈ [0, |S|).

Trie. A trie (Fredkin, 1960; Knuth, 1998) is an edge-labeled tree structure that
is well-used to implement the string dictionary. Figure 1a shows an example of
the trie. The trie is built by merging common prefixes of strings and by giving a
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Fig. 1. Tries for S = {“aaa”, “aabc”, “acb”, “acbab”, “bbab”}. The square nodes
denote terminals of strings.

character on each edge. Strings are registered on the root-to-leaf paths. When a
string is the prefix of another one, it terminates on an internal node. To identify
terminal nodes, we define a bit array TERM in which TERM[s] = 1 iff node s is
terminal. For example, we define TERM[0, 14) = [00010101010001] for the trie of
Figure 1a, and TERM[7] = 1 denotes that internal node 7 is the terminal for “acb”.

The trie can carry out lookup and access as follows. For lookup(q), we
traverse nodes from the root with characters of q. If reached node s is termi-
nal, that is, TERM[s] = 1, the string ID is returned by rank(TERM, s) ∈ [0, |S|).
For access(i), we obtain the terminal node s corresponding to the ID i by
select(TERM, i). The string is extracted by traversing nodes from node s in re-
verse and by concatenating the characters on the path.

We define two operations to traverse nodes: child(s, c) returns the child of
node s with character c, and parent(s) returns the pair of the parent of node s
and the edge character between the nodes. Operations lookup and access are
supported by child and parent, respectively. That is to say, trie representations
have to support the two operations to implement the string dictionary.

Examples. In Figure 1a, child(1, ‘c’) = 6 and parent(4) = (2, ‘b’). Opera-
tions lookup(“acb”) = 2 and access(2) = “acb” are carried out as follows. For
lookup, nodes are traversed with query “acb” as child(0, ‘a’) = 1, child(1, ‘c’) =
6 and child(6, ‘b’) = 7. From TERM[7] = 1, the string ID is returned by rank(TERM, 7) =
2. For access, the terminal node is given by select(TERM, 2) = 7. The edge la-
bels are extracted by parent(7) = (6, ‘b’), parent(6) = (1, ‘c’) and parent(1) =
(0, ‘a’). Concatenating the characters in reverse obtains “acb”.

Minimal prefix trie. There are several trie variants for compaction. The vari-
ants include a minimal prefix trie (MP-trie). (Dundas, 1991; Aoe, Morimoto and
Sato, 1992) focusing on that the trie cannot merge the suffixes of strings. The
MP-trie keeps only minimal prefixes of strings as nodes and the rest suffixes as
strings separately. Moreover, Yata, Oono, Morita, Sumitomo and Aoe (2006) in-
troduce that the common suffixes of the separated strings can be unified. Figure
1b shows an example of the MP-trie. From Figure 1, we can see that the num-
ber of nodes is reduced from 14 to 9. Special terminal character ‘#’ (basically,
the ASCII zero code) is added at the end of each separated string. Leaf nodes
become terminals instead of reduced nodes and have links to the strings.
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Fig. 2. DA representation of the MP-trie of Figure 1b. The numerical code in-
tegers are code(‘a’) = 0, code(‘b’) = 1 and code(‘c’) = 2. The invert function
provides char(0) = ‘a’, char(1) = ‘b’ and char(2) = ‘c’. The node IDs are
arranged to satisfy Eq. (1).

2.3. Double-arrays

DA (Aoe, 1989) represents a trie by using two integer arrays called BASE and
CHECK. Each index corresponds to each node. When the trie has the edge from
node s to node t with character c, DA satisfies the following equations3:

BASE[s]⊕ code(c) = t and CHECK[t] = s, (1)

where code(c) ∈ [0, σ) returns the numerical code integer of character c. DA
can carry out child and parent by using the simple equations as follows. For
child(s, c), child t is given by BASE[s]⊕code(c) = t and is returned if CHECK[t] =
s. For parent(s), it is carried out by (CHECK[s], char(BASE[CHECK[s]]⊕ s)), where
char is an invert function of code such that char(code(c)) = c. DA can provide
extremely fast traversal.

DA uses two additional arrays for the MP-trie: a bit array LEAF in which
LEAF[s] = 1 iff node s is a leaf, and a character array TAIL storing separated
strings. In LEAF[s] = 1, BASE[s] has a link from node s to TAIL. Figure 2 shows
an example of DA representing the MP-trie of Figure 1b. From this figure, we
can see that the node IDs are arranged to satisfy Eq. (1). The arranged nodes
can include several invalid IDs such as ID 7. The invalid nodes are identified as
empty elements.

Examples. In Figure 2, child(1, ‘c’) = 6 and parent(9) = (4, ‘b’) are carried
out as follows. For child, the child ID is given by BASE[1] ⊕ code(‘c’) = 4 ⊕
2 = 6. Node 6 is returned from CHECK[6] = 1. For parent, the parent ID is
given by CHECK[9] = 4. The edge character between nodes 4 and 9 is given by
char(BASE[4] ⊕ 9) = char(8 ⊕ 9) = char(1) = ‘b’. As a result, the pair (4, ‘b’)
is returned. For the link from node 5 to TAIL[2], this TAIL position is given by
BASE[5] = 2 because of LEAF[5] = 1.

Construction algorithm. DA is built by arranging node IDs to satisfy Eq. (1).
Let E be a set of edge characters from node s, the child IDs are arranged by using

3 Operator ⊕ denotes an XOR (exclusive OR) operation. While traditional implementations
use a PLUS (+), the XOR (⊕) is often substituted in recent ones such as (Yoshinaga and
Kitsuregawa, 2014) and Darts-clone at https://github.com/s-yata/darts-clone.
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xcheck(E) that returns an arbitrary integer base such that nodes base⊕code(c)
are invalid for each character c ∈ E, that is, the elements are empty. When
BASE[s] is defined as BASE[s] ← xcheck(E), the child IDs t are also defined as
t ← BASE[s] ⊕ code(c) and CHECK[t] ← s for each character c ∈ E. In static
construction, DA is built by repeating this process from the root recursively.

Previous compressed DAs. In practice, the space usage of DA is very large
because BASE and CHECK use 32 or 64 bit integers to represent node pointers.
Several methods are proposed to compress the arrays. The compact double-array
(CDA) (Yata, Oono, Morita, Fuketa, Sumitomo and Aoe, 2007) is a useful and
popular one. CDA changes the right part of Eq. (1) into CHECK[t] = c. That is to
say, each CHECK element is represented in log σ bits by storing characters instead
of integers. In practice, CHECK becomes compact because of log σ = 8 as byte
characters. However, CDA cannot support parent because the CHECK does not
indicate parent nodes. Therefore, CDA cannot support access, that is, cannot
implement the string dictionary.

Kanda et al. (2016) propose another compressed DA, called the double-array
using linear functions (DALF), that empirically represents BASE with 8 bit inte-
gers. However, this method cannot also support access because it is based on
CDA. Although Fuketa, Kitagawa, Ogawa, Morita and Aoe (2014) also propose
a CDA-based compact trie representation, its applications are limited to fixed
length strings such as zip codes.

2.4. Directly addressable codes

Variable-length coding is the main part of data compression (Salomon, 2008).
It can represent a fixed-length array of integers using variable-length codes with
less space. A problem with the codes is how to directly extract arbitrary inte-
gers. Brisaboa, Ladra and Navarro (2013) propose the directly addressable codes
(DACs) to solve the problem practically.

DACs implement direct extraction by combining rank with Vbyte coding
(Williams and Zobel, 1999). Suppose that DACs represent an array of integers P .
Given a parameter b, we split (P [i])2 into blocks of b bits, p(i,ki), . . . , p(i,2), p(i,1)
where ki = d|(P [i])2|/be. For example in P [i] = 49 and b = 2, we split (49)2 =
110001 into p(i,3) = 11, p(i,2) = 00, and p(i,1) = 01. First, arrays Aj store all the
j-th blocks for 1 ≤ j until all blocks are stored. Next, bit arrays Bj are defined
such that Bj [i] = 1 iff Aj [i] stores the last block. Figure 3 shows an example of
a DAC representation.

Let i1, i2, . . . , iki denote the path storing P [i], that is, A1[i1] = p(i,1), A2[i2] =
p(i,2), . . . , Aki

[iki
] = p(i,ki). We can extract P [i] by following the path and by

concatenating the Aj values. The start position i1 is given by i1 = i, and the
after ones i2, . . . , iki

are given by the following;

ij+1 = rank(Bj , ij) (Bj [ij ] = 1). (2)

From Bj [ij ] = 0, we can identify that Aj [ij ] stores the last block. For example
in Figure 3, P [5] is extracted by concatenating values A1[5] = p(5,1) and A2[3] =
p(5,2). The second position 3 is given by rank(B1, 5) = 3, and we can see that
A2[3] = p(5,2) is the last block from B2[3] = 0.

Let N denote the maximum integer in P , DACs can represent P using arrays
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0 1 2 3 4 5 …
P p(0,2),p(0,1) p(1,1) p(2,2),p(2,1) p(3,3),p(3,2),p(3,1) p(4,1) p(5,2),p(5,1) …

DAC	representation

0 1 2 3 4 5 …
A1 p(0,1) p(1,1) p(2,1) p(3,1) p(4,1) p(5,1) …
B1 1 0 1 1 0 1 …

0 1 2 3 …
A2 p(0,2) p(2,2) p(3,2) p(5,2) …
B2 0 0 1 0 …

0 …
A3 p(3,3) …

Fig. 3. Example of a DAC representation for array P .

A1, . . . , AL and B1, . . . , BL−1, where L = d|(N)2|/be. Note that DACs do not
use BL because that AL stores only the last blocks is trivial. Since Aj is a fixed-
length array, extracting an integer in a DAC representation takes O(L) time in
the worst case.

An advantage of DACs is the fast extraction. Brisaboa et al. (2013) show
that DACs can provide faster extraction than other directly extractable variable-
length codes in practice. In particular, byte-oriented DACs with b = 8 are well-
used because very fast extraction can be supported. For compressed string dictio-
naries, HashDAC and RPDAC in (Mart́ınez-Prieto et al., 2016) apply DACs to
array compression. In addition, a construction algorithm introduced in Section
3.2 is compatible with the byte-oriented DACs. Therefore, our data structure
will use them to compress DA and to maintain the fast operations.

3. New compressed double-array trie

DA’s scalability is caused by storing node pointers in BASE and CHECK arrays.
General implementation represents the arrays as fixed length ones with 32 or 64
bit integers. Therefore, their space usages become very large. DACs can represent
such arrays using variable length codes with directly extraction, but representing
BASE and CHECK including many large integers is inefficient in space and time.

We present a new data structure built by the following steps: Step 1 trans-
forms BASE and CHECK into arrays including many small integers, and Step 2
represents the arrays using DACs. Section 3.1 presents the transformation tech-
nique. Section 3.2 shows a construction algorithm to support the transformation.
Section 3.3 explains our data structure.

3.1. XOR transformation

It is a technique that compresses an array of integers by using differences between
values and indices. It transforms an array of integers P into array PX such that
PX [i] = P [i]⊕i. We can extract P [i] from PX [i] as PX [i]⊕i = (P [i]⊕i)⊕i = P [i]
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because of i ⊕ i = 0. Suppose that P is partitioned into blocks of length r that
is a power of 2, we give the following theorem for PX .

Theorem 1 Integer PX [i] can be represented in log r bits for P [i] such that
bP [i]/rc = bi/rc.

Proof. When r is a power of 2, bi/rc denotes to right shift (i)2 by log r bits. In
bP [i]/rc = bi/rc, (P [i])2 and (i)2 consist of the same bits except for the lowest
log r bits. Therefore, (P [i] ⊕ i)2 except for the lowest log r bits becomes zero,
that is, PX [i] = P [i]⊕ i can be represented in log r bits.

Examples. Let P [23] = 21 in r = 4. Function b23/4c = 5 denotes to right shift
(23)2 = 10111 by log 4 = 2 bits as (5)2 = 101. Similarly, b21/4c = 5 denotes
to right shift (21)2 = 10101 by 2 bits. Binaries 10111 and 10101 consist of the
same bits except for the lowest 2 bits because of b23/4c = b21/4c. Therefore,
PX [23] = 21⊕ 23 = 2 can be represented in 2 bits as 10111⊕ 10101 = 00010.

3.2. Construction algorithm

DACs can efficiently represent an array including many b bit integers because
such integers are represented by using only the first array A1. Let P include
many integers satisfying the condition of Theorem 1 in r = 2b, most PX values
are in log r = b bits. For BASE and CHECK, the values can be freely determined
as long as Eq. (1) is satisfied. Therefore, we can obtain BASE and CHECK values
satisfying the condition in r = 2b.

We present a function ycheckr that targets to determine BASE values satisfy-
ing the condition. Let E be a set of edge characters from node s, XCDA defines
BASE values as BASE[s]← ycheckr(E, s).

Algorithm 1 ycheckr(E, s)

1: for base← bs/rc · r, (bs/rc+ 1) · r do
2: if Nodes base⊕ code(c) are invalid for each c ∈ E then
3: return base . bbase/rc = bs/rc
4: end if
5: end for
6: return xcheck(E) . bxcheck(E)/rc 6= bs/rc

Function ycheckr(E, s) targets to determine BASE[s] such that bBASE[s]/rc =
bs/rc. This loop searches such BASE[s] satisfying Eq. (1) on the block bs/rc. If the
loop cannot find it, BASE[s] is determined in the same manner as the conventional
algorithm.

Function ycheckr(E, s) is effective for characters c such that code(c) ∈ [0, r)
as the following reason. Let t be the child of node s with such character c, the
following equation is satisfied;

bBASE[s]/rc = b(BASE[s]⊕ code(c))/rc = bt/rc. (3)

When bBASE[s]/rc = bs/rc is satisfied, Eq. (3) and the right part of Eq. (1) give
bs/rc = bt/rc = bCHECK[t]/rc. That is to say, we only have to search BASE[s]
such that bBASE[s]/rc = bs/rc in order to obtain BASE[s] and CHECK[t] satisfying
the condition of Theorem 1 (see Figure 4).
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t1 s t2
BASE 𝑏𝑎𝑠𝑒
CHECK s s

𝑏𝑎𝑠𝑒	⨁	code(𝑐1) ∈ [0, 𝑟) 𝑏𝑎𝑠𝑒	⨁	code(𝑐2) ∉ [0,𝑟)

𝑟

s t1

t2

c1

c2

Fig. 4. The relation between node s and its children t1 and t2. Suppose that
BASE[s] = base satisfies bbase/rc = bs/rc, bCHECK[t1]/rc = bs/rc = bt1/rc is also
satisfied in code(c1) ∈ [0, r).

In practice, σ ≤ 256 always holds because byte characters are used to edge
labels. Therefore, ycheckr can obtain BASE and CHECK values satisfying the con-
dition in r = 28 = 256. In other words, the function is compatible with the
byte-oriented DACs with b = 8. The effectiveness will be shown in Section 5.

3.3. Data structure

We call our data structure the XOR-compressed double-array (XCDA). Let BASEX
and CHECKX be arrays such that BASEX [i] = BASE[i]⊕i and CHECKX [i] = CHECK[i]⊕
i, respectively. XCDA is built by representing BASEX and CHECKX using the
byte-oriented DACs. From Section 3.2, ycheckr can provide BASEX and CHECKX
including many 8 bit integers. Therefore, XCDA can provide compact trie rep-
resentations.

On the other hand, it is necessary to discuss how to represent empty elements
and TAIL links. General DAs represent empty elements by using invalid values
such as negative integers. The links are determined randomly corresponding to
TAIL positions. These BASEX and CHECKX values become large when using the
XOR transformation. Therefore, XCDA represents the values as follows.

– As CHECK[t] = s means that the parent of node t is node s, inequation s 6= t
always holds. We can consider CHECK[i] = i as empty elements. The CHECKX
values always become zero because of CHECKX [i] = CHECK[i]⊕ i = i⊕ i = 0. If
BASE[s] is empty, CHECK[s] is also empty. Therefore, we do not have to identify
whether BASE elements are empty. XCDA sets BASE[i] = i for empty elements.

– XCDA represents TAIL links by using the first array A1 and an additional
array LINK. Suppose BASE[s] = pos in LEAF[s] = 1, BASEX [s] stores the lowest
b bits of (pos)2 and LINK[rank(LEAF, s)] stores the rest bits. XCDA supports
fast extraction of TAIL links because only A1 and LINK are used.

Examples. Figure 5 shows an example of XCDA for the DA of Figure 2. The
shaded elements denote TAIL links. Except for the links, BASEX and CHECKX are
built by using the XOR transformation. For example, CHECKX [3] is transformed
by CHECK[3] ⊕ 3 = 6 ⊕ 3 = 5. Empty BASEX [7] and CHECKX [7] become zero
by setting BASE[7] = 7 and CHECK[7] = 7. For the TAIL link BASE[9] = 4, the
lowest b bits of (BASE[9])2 = (4)2 = 100 and the rest bits are stored in BASEX [9]
and LINK[rank(LEAF, 9)] = LINK[3], respectively. Let b = 2, BASEX [9] = 00 and
LINK[3] = 1. XCDA is built by representing the BASEX and CHECKX using DACs.
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0 1 2 3 4 5 6 7 8 9
BASE 1 4 0 5 8 2 2 7 5 4
CHECK 0 0 0 6 1 3 1 7 4 4
LEAF 0 0 1 0 0 1 0 0 1 1

0 1 2 3 4 5 6 7 8 9
BASEX 1 5 0 6 12 2 4 0 1 0
CHECKX 0 1 2 5 5 6 7 0 12 13
LEAF 0 0 1 0 0 1 0 0 1 1

0 1 2 3
LINK 0 0 1 1

DAC	representation

rank1(LEAF,	𝑖)

BASE 𝑖 	⨁	𝑖	
CHECK 𝑖 	⨁	𝑖	

BASE𝑋 𝑖 	⨁	𝑖	
CHECK𝑋 𝑖 	⨁	𝑖	

Fig. 5. The transformed arrays in b = 2 from the DA of Figure 2.

It is very easy to extract original BASE and CHECK values from the XCDA.
Value CHECK[3] = 6 is extracted by CHECKX [3] ⊕ 3 = 5⊕ 3 = 6. From BASE[7] =
0, we can identify that this element is empty. From LEAF[9] = 1, the link
(BASE[9])2 = (4)2 = 100 is extracted by concatenating values LINK[rank(LEAF, 9)] =
LINK[3] = 1 and BASEX [9] = 00.

4. Improvement for fast operations

Section 3 introduces techniques to transform BASE and CHECK into BASEX and
CHECKX including many small integers, respectively. XCDA represents BASEX and
CHECKX by using DACs. On the other hand, all BASEX and CHECKX values are
not represented in b bits because of Eq. (1). While DACs extract such values by
using rank in constant time, many bit operations are used in practice. Therefore,
the retrieval speed of XCDA using DACs is not competitive to that of DA using
plain pointers. This section presents new pointer-based DACs called Fast DACs
(FDACs), supporting directly extraction without rank.

4.1. Pointer-based fast DACs

For simplicity, we introduce FDACs corresponding to DACs in Section 2.4. More
precisely, P [i] is extracted through the same path, i1, i2, . . . , iki

. Figure 6 shows
an example of a FDAC representation. In this figure, as Figure 3, P [5] is extracted
by following the 5 and 3 positions on the first and second arrays, respectively.
Such FDACs consist of the following arrays:

– Arrays A′1, A
′
2, . . . , A

′
L with b1, b2, . . . , bL bit integers, where b1 = b, b2 = 2 ·

b, . . . , bL = L · b.
– Bit arrays B′1, B

′
2, . . . , B

′
L−1 including the same bits as B1, B2, . . . , BL−1 in

Section 2.4.

– Arrays F1, F2, . . . , FL−1 whose each element corresponds to each block, assum-
ing that A′j and B′j are partitioned into blocks of length rj = 2bj .
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0 1 2 3 4 5 …
P p(0,2),p(0,1) p(1,1) p(2,2),p(2,1) p(3,3),p(3,2),p(3,1) p(4,1) p(5,2),p(5,1) …

FDAC	representation

0 1 2 3 4 5 …
𝐴;< 0 p(1,1) 0 1 p(4,1) 0 …
𝐵;< 1 0 1 1 0 1 …
F1 0 1 3 …

0 1 2 3 …
𝐴>< p(0,2),p(0,1) p(2,2),p(2,1) 0 p(5,2),p(5,1) …
𝐵>< 0 0 1 0 …
F2 0 …

0 …
𝐴?< p(3,3),p(3,2),p(3,1) …

Fig. 6. Example of a FDAC representation corresponding to the DACs of Figure
3. We assume the DACs with b = 1 and the FDACs with b1 = 1, b2 = 2 and
b3 = 3, that is, r1 = 2 and r2 = 4.

On the path i1, i2, . . . , iki
, values A′j [ij ] for 1 ≤ j < ki indicate the next

positions ij+1 by keeping the results of rank(B′j , ij), and value A′ki
[iki

] keeps
P [i] directly. In order that A′j [ij ] can indicate ij+1 in bj bits, arrays Fj keep the
results of rank for each head of blocks on A′j , as Fj [x] = rank(B′j , rj ·x). Arrays
A′j store the differences as A′j [ij ] = rank(B′j , ij)−Fj [bij/rjc]. Each element of A′j
can be represented in bj = log rj bits because A′j [ij ] ∈ [0, rj) is always satisfied.
FDACs change Eq. (2) into Eq. (4);

ij+1 = A′j [ij ] + Fj [bij/rjc] (B′j [ij ] = 1). (4)

We explain how to carry out the extraction using the example of Figure 6.
When P [5] is extracted, the first position 5 of A′1 is given in the same manner
as DACs. From B′1[5] = 1, we can see that the second position exists. While
DACs get the second position by rank(B1, 5) = 3, FDACs can get it without
rank as A′1[5] +F1[b5/r1c] = A′1[5] +F1[2] = 0 + 3 = 3. Thanks to F1[2] keeping
rank(B′1, r1 · 2) = rank(B′1, 4) = 3, A′1[5] can represent the results of rank in
b1 = 1 bit. We can see that A′2[3] directly keeps P [5] because of B′2[3] = 0, and
the extraction is done.

FDACs can represent an array of integers P when every integer can be repre-
sented in any arrays A′1, . . . , A

′
L. Although the extraction time of FDACs is equal

to that of DACs in O(L), FDACs can follow the path i1, . . . , iki
at high-speed

without rank.
On the other hand, the space efficiency becomes low when using arrays

A′2, . . . , A
′
L frequently, because each A′j element uses j · b bits while each Aj

element uses b bits. Fortunately, we can obtain many BASEX and CHECKX val-
ues represented in A′1 because of ycheckr. Therefore, FDACs is excellent with
XCDA.
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Byte-oriented FDACs. We do not have to separately manage A′j and B′j
becauseB′j does not use rank. Therefore, FDACs can improve the cache efficiency
of DACs by allocating A′j [i] and B′j [i] on contiguous space. The byte-oriented
FDACs define b1 = 7, b2 = 15, . . . so that A′j [i] and B′j [i] are represented on the
same byte space.

4.2. Code arrangement

Function ycheckr works for characters c such that code(c) ∈ [0, 128) when using
the byte-oriented FDACs with b1 = 7 = log 128 bits. There are no problems
for ASCII characters because σ ≤ 128 always holds. On the other hand, byte
characters given by splitting multi-byte ones such as UTF-8 in Japanese and
Chinese often satisfy 128 < σ. This subsection introduces a technique to utilize
ycheckr for the byte-oriented FDACs.

We improve code into codeF such that codeF (c) ∈ [0, σ) returns the order
number of character c when sorting characters in the string dictionary by fre-
quency in descending order. That is to say, codeF returns integers in [0, r) for
the top r characters of appearance frequency in the dictionary. Most characters
are empirically represented as codeF (c) ∈ [0, 128) because character frequency
of real datasets is biased.

Suppose that a string dictionary is built from all page titles of the Japanese
Wikipedia of Jan. 20154. The character encoding is UTF-8. While the dictio-
nary satisfies σ = 189, 99.7% characters c in the dictionary are represented as
codeF (c) ∈ [0, 128).

5. Experimental evaluations

This section analyzes practical performances of XCDAs on real-world datasets.
We compare XCDAs with other string dictionaries and give evaluations of our
data structure in practice.

5.1. Setting

We carried out the experiments on Quad-Core Intel Xeon 2 x 2.4 GHz, 16 GB
RAM. All string dictionaries were implemented in C++. They were compiled
using Apple LLVM version 7.0.2 (clang-700.1.81) with optimization -O3.

Datasets. We used the following real datasets of several types:

– geonames: Geographic names on the asciiname column from the geonames
dump5.

– nwc-2010: Japanese word ngrams in the Nihongo Web Corpus 20106.

– jawiki-titles: All page titles from the Japanese Wikipedia of Jan. 2015.

4 https://dumps.wikimedia.org
5 http://download.geonames.org/export/dump/allCountries.zip
6 http://dist.s-yata.jp/corpus/nwc2010/ngrams/word/over999/filelist
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Table 1. Information about datasets.

Size (MB) |S| Ave. length σ # of nodes |TAIL|

geonames 106.1 6,784,722 15.6 96 11,378,833 8,733,434
nwc-2010 460.8 20,722,756 22.2 180 52,047,795 548,133
jawiki-titles 33.9 1,518,205 22.3 189 3,516,248 5,234,145
enwiki-titles 238.2 11,519,354 20.7 199 25,749,451 23,108,877
uk-2005 2,855.5 39,459,925 72.4 103 117,568,967 289,826,785
gene-DNA 198.5 15,265,943 13.0 16 20,688,222 39,244

– enwiki-titles: All page titles from the English Wikipedia of Feb. 2015.

– uk-2005: URLs of a 2005 crawl by the UbiCrawler (Boldi, Codenotti, Santini
and Vigna, 2004) on the .uk domain7.

– gene-DNA: All substrings of 12 characters found in the Gene DNA data set
from Pizza&Chili Corpus8.

Table 1 summarizes the informations about each dataset: the raw size in
MB, number of different strings, average number of characters per string when
including a terminator, number of different characters used in the dictionary,
number of nodes, and length of TAIL in the MP-trie.

Data structures. We compared performances of XCDAs to previous DA tries
and state-of-the-art compressed string dictionaries. For XCDAs, there are four
patterns as follows:

– XCDA-x using the byte-oriented DACs and xcheck.

– XCDA-y using the byte-oriented DACs and ycheck256.

– FXCDA-x using the byte-oriented FDACs and xcheck.

– FXCDA-y using the byte-oriented FDACs and ycheck128.

For previous DA tries, we tested the original DA (Aoe, 1989), CDA (Yata,
Oono, Morita, Fuketa, Sumitomo and Aoe, 2007) and DALF (Kanda et al.,
2016), representing the MP-trie. Note that CDA and DALF can not support
access. For DALF parameters, we chose x = 8, bsize = 512, α = 128 and
gain = 1.0 in common with the experiments in (Kanda et al., 2016). DALF
represents the MP-trie using LEAF and LINK in the same manner as Section
3.3 because the BASE consists of 8 bit integers. We implemented xcheck using
fast algorithms in (Morita, Fuketa, Yamakawa and Aoe, 2001). We used codeF
for all structures because there are no disadvantages. Our library at https:
//github.com/kamp78/cda-tries packs these implementations and shows more
technical details.

As for the state-of-the-art, Cent is the centroid path-decomposed trie and
Cent-rp is the Re-Pair (Larsson and Moffat, 1999) compressed one, from (Grossi
and Ottaviano, 2014). We also tested PFC, HTFC-rp and HashDAC-rp from
(Mart́ınez-Prieto et al., 2016). PFC is a plain Front-Coding dictionary. HTFC-
rp is a Hu-Tucker (Hu and Tucker, 1971) Front-Coding dictionary compressed
by using Re-Pair. HashDAC-rp is a hashing dictionary compressed by using Re-
Pair and DACs. For the Front-Coding dictionaries, we chose bucket size 8 as the

7 http://data.law.di.unimi.it/webdata/uk-2005/uk-2005.urls.gz
8 http://pizzachili.dcc.uchile.cl/texts/dna/dna.gz
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best space/time trade-off in the same manner as (Grossi and Ottaviano, 2014)
and (Arz and Fischer, 2014). In addition, we tested bucket sizes 2 and 4 for
HTFC-rp in order to observe faster operations. For HashDAC-rp, Mart́ınez-
Prieto et al. (2016) evaluate 5 load factors. Since their performances do not
change significantly, we chose load factor α = 0.5 supporting the fastest lookup.
While LZ-compressed string dictionaries (Arz and Fischer, 2014) are effective for
synthetic datasets containing many often repeated substrings, Cent-rp outper-
forms the LZ-dictionaries for real datasets from previous experiments. Therefore,
our experiments did not include the LZ-dictionaries. Cent and Cent-rp were im-
plemented by using path decomposed tries9. PFC, HTFC-rp and HashDAC-rp
were implemented by using libCSD10.

5.2. Results

We first observe DACs and FDACs using xcheck and ycheckr. Next, we evaluate
the practical performance of our data structure in static string dictionaries.

For construction algorithms. Table 2 shows the percentages of values for
each level of DACs and FDACs using xcheck and ycheckr. In DACs, Aj can
represent 8 ·j bit integers and the maximum level is 4. In FDACs, A′1, A′2 and A′3
can represent 7, 15 and 32 bit integers, respectively. Each column represents the
percentages of represented values in each level, that is, the sum of percentages
in each row becomes 100%.

From the table, the 1st level for all cases can represent many values while val-
ues on the 2nd or deeper levels always arise to satisfy Eq. (1). Function ycheckr
provides better results than xcheck, especially in FDACs whose allocation of
the 1st level is smaller. Therefore, ycheckr can contribute to improvement of
our data structure.

For string dictionaries. Tables 3–5 show the experimental results about the
construction time, percentage of compression ratio between the data structure
and the raw data sizes, and average running times of lookup and access. To
measure the running times of lookup, we chose 1 million random strings from
each dataset. The running times of access were measured for 1 million IDs
corresponding to the random strings. Each test was averaged on 10 runs. We
could not build HashDAC-rp for uk-2005 because the construction complexity
exceeded the memory resources of our computational configuration. Moreover,
it did not complete the construction on gene-DNA in 6 hours; hence we had to
kill the process.

When comparing the construction algorithms in the new DA tries, using
ycheckr slightly outperforms using xcheck because more values are represented
in the 1st level. Function ycheckr provides better compression ratios in all cases
because they obediently depend on the percentages in Table 2. The lookup and
access times also depend largely on the percentages; therefore ycheckr provides
faster operations in most cases. There are no significant problems in construction.
Thus, using ycheckr is a better choice.

When comparing the new DA tries using ycheckr, FXCDA-y provides faster

9 https://github.com/ot/path_decomposed_tries
10 https://github.com/migumar2/libCSD



Compressed double-array tries for string dictionaries supporting fast lookup 15

Table 2. Experimental results about percentages of values on each level in DACs
and FDACs.

(a) geonames

1st 2nd 3rd 4th

XCDA-x 86.04 13.58 0.38 0.00
XCDA-y 88.94 10.67 0.39 0.00
FXCDA-x 78.21 21.16 0.63 –
FXCDA-y 83.88 15.45 0.68 –

(b) nwc-2010

1st 2nd 3rd 4th

XCDA-x 92.07 7.72 0.21 0.00
XCDA-y 93.74 6.05 0.21 0.00
FXCDA-x 87.32 12.33 0.35 –
FXCDA-y 90.89 8.76 0.36 –

(c) jawiki-titles

1st 2nd 3rd 4th

XCDA-x 88.20 11.51 0.29 0.00
XCDA-y 90.75 8.97 0.28 0.00
FXCDA-x 81.00 18.55 0.45 –
FXCDA-y 86.00 13.48 0.52 –

(d) enwiki-titles

1st 2nd 3rd 4th

XCDA-x 88.62 10.98 0.39 0.01
XCDA-y 90.81 8.79 0.39 0.01
FXCDA-x 82.37 17.01 0.62 –
FXCDA-y 86.42 12.94 0.65 –

(e) uk-2005

1st 2nd 3rd 4th

XCDA-x 92.88 7.02 0.10 0.00
XCDA-y 94.25 5.66 0.10 0.00
FXCDA-x 88.00 11.83 0.17 –
FXCDA-y 90.44 9.40 0.16 –

(f) gene-DNA

1st 2nd 3rd 4th

XCDA-x 94.04 5.90 0.06 0.00
XCDA-y 94.55 5.38 0.06 0.00
FXCDA-x 90.09 9.80 0.11 –
FXCDA-y 90.80 9.09 0.11 –

operations than XCDA-y in all cases because of removing rank and improving
cache efficiency. For the compression ratios, FXCDA-y is superior in nwc-2010,
uk-2005 and gene-DNA while XCDA-y is superior in geonames, jawiki-titles
and enwiki-titles. Although FDACs use more space in the 2nd or deeper
levels to embed rank information, the 1st level A′1 consists of 7 bit integers, less
space than 8 bit integers on A1 in DACs, because A′1 and B′1 are not managed
separately. Therefore, FXCDA-y becomes compact when the percentage in the
1st level is high. On all aspects, FXCDA-y excels in the new DA tries. In what
follows, we compare it to other data structures.

Compared to the previous DA tries, FXCDA-y is 1.7–2.6 times smaller than
DA and solves the problem that we cannot apply the previous DA tries to the
compressed string dictionaries. CDA always provides the fastest lookup because
of improvement of the cache efficiency from CHECK compaction, but the scalability
of BASE is a problem. DALF provides competitive compression ratios, but the
lookup becomes slow for large datasets such as uk-2005 because of technological
factors as follows. DALF is built by arranging nodes in breadth-first order while
general DA tries are built by arranging nodes in depth-first order. In DALF,
cache misses can occur frequently in parent-child traversal, that is, the lookup
can become slow especially for a long query in a large trie. On the other hand,
FXCDA-y supports stable and fast lookup and access.

Compared to Cent and PFC not compressed by Re-Pair, FXCDA-y provides
competitive or smaller space except for Cent on gene-DNA. Moreover, it provides
the fastest lookup. The running time of FXCDA-y is up to 3 and 2 times faster
than those of Cent and PFC, respectively. For access, PFC is the fastest while
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Table 3. Experimental results about string dictionaries for geonames and
nwc-2010.

(a) geonames

Constr. (sec) Cmpr. (%) lookup (µs/str) access (µs/ID)

New DA tries
XCDA-x 5.7 51.8 1.12 1.52
XCDA-y 5.8 51.2 1.10 1.51
FXCDA-x 5.5 55.1 0.96 1.32
FXCDA-y 5.7 52.8 0.93 1.29
Previous DA tries
DA 4.9 95.8 0.61 0.95
CDA 5.0 63.7 0.49 –
DALF 9.5 52.8 0.80 –
State-of-the-art dictionaries
Cent 13.6 51.5 2.01 2.13
Cent-rp 33.8 31.5 2.10 2.17
PFC 0.6 60.5 1.61 0.47
HTFC-rp (2) 51.5 59.0 2.39 0.82
HTFC-rp (4) 211.9 42.7 2.80 1.14
HTFC-rp (8) 125.1 34.4 3.50 1.79
HashDAC-rp 298.9 48.0 1.28 0.92

(b) nwc-2010

Constr. (sec) Cmpr. (%) lookup (µs/str) access (µs/ID)

New DA tries
XCDA-x 16.9 36.6 1.92 2.58
XCDA-y 17.0 36.2 1.91 2.59
FXCDA-x 16.0 37.3 1.61 2.22
FXCDA-y 16.2 35.7 1.57 2.20
Previous DA tries
DA 13.7 92.4 1.00 1.58
CDA 14.7 58.5 0.83 –
DALF 35.4 34.2 1.88 –
State-of-the-art dictionaries
Cent 39.7 42.2 2.73 2.89
Cent-rp 76.4 16.9 2.66 2.81
PFC 1.9 38.2 2.10 0.51
HTFC-rp (2) 201.3 49.3 3.04 0.88
HTFC-rp (4) 343.2 30.7 3.34 1.14
HTFC-rp (8) 423.2 21.5 3.77 1.63
HashDAC-rp 1456.6 29.1 1.72 1.08

FXCDA-y is faster than Cent. For the construction cost, PFC is much faster,
yet both FXCDA-y and Cent are practical as static string dictionaries.

Compared to Cent-rp, HTFC-rp and HashDAC-rp, FXCDA-y is larger be-
cause of the powerful Re-Pair compression. FXCDA-y is up to 2.6, 1.8 and 1.5
times larger than Cent-rp, HTFC-rp and HashDAC-rp, respectively. On the other
hand, FXCDA-y can provide much faster lookup because the compressions pose
a decrease in speed. The running time of FXCDA-y is up to 3.1 and 2.0 times
faster than those of Cent-rp and HashDAC-rp, respectively. Compared to HTFC-
rp, FXCDA-y is up to 5.5 times faster in bucket size 8. For smaller bucket sizes,
FXCDA-y maintains faster lookup while the compression ratio becomes compet-
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Table 4. Experimental results about string dictionaries for jawiki-titles and
enwiki-titles.

(a) jawiki-titles

Constr. (sec) Cmpr. (%) lookup (µs/str) access (µs/ID)

New DA tries
XCDA-x 1.5 53.5 0.85 1.24
XCDA-y 1.5 53.0 0.83 1.22
FXCDA-x 1.4 55.9 0.70 1.04
FXCDA-y 1.5 54.0 0.66 1.02
Previous DA tries
DA 1.3 100.3 0.52 0.90
CDA 1.3 69.1 0.40 –
DALF 2.6 56.1 0.61 –
State-of-the-art dictionaries
Cent 3.5 92.0 1.57 1.81
Cent-rp 9.9 32.4 1.67 1.89
PFC 0.2 61.0 1.35 0.49
HTFC-rp (2) 22.5 57.0 2.12 0.85
HTFC-rp (4) 43.4 41.0 2.68 1.32
HTFC-rp (8) 69.5 32.6 3.62 2.25
HashDAC-rp 110.0 35.3 1.33 0.85

(b) enwiki-titles

Constr. (sec) Cmpr. (%) lookup (µs/str) access (µs/ID)

New DA tries
XCDA-x 12.6 50.6 1.58 2.09
XCDA-y 12.8 50.1 1.56 2.10
FXCDA-x 12.1 52.8 1.33 1.82
FXCDA-y 12.5 51.1 1.31 1.82
Previous DA tries
DA 11.0 98.1 0.82 1.31
CDA 11.3 65.7 0.67 –
DALF 23.3 51.5 1.39 –
State-of-the-art dictionaries
Cent 24.5 52.4 2.40 2.48
Cent-rp 73.5 31.6 2.62 2.65
PFC 1.2 59.6 1.97 0.62
HTFC-rp (2) 930.1 56.9 2.87 1.00
HTFC-rp (4) 712.3 40.8 3.40 1.50
HTFC-rp (8) 936.7 32.6 4.49 2.51
HashDAC-rp 780.7 41.0 1.66 1.31

itive. In addition, using the Re-Pair compression devotes large construction costs.
Therefore, the speed differences can overcome the disadvantage of FXCDA-y in
space.

We finally remark that an advantage of our data structure is to support the
fastest lookup in compressed string dictionaries. Its construction cost is also
practical in static string dictionaries. Our data structure is useful in applications
emphasizing response speed for string queries, and such applications exist in
large numbers. For example, inverted indexes, used in search engines and so on,
handle the dictionaries to find the positions in a text from a keyword composed
of natural languages (Baeza-Yates and Ribeiro-Neto, 2011). While this litera-
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Table 5. Experimental results about string dictionaries for uk-2005 and
gene-DNA.

(a) uk-2005

Constr. (sec) Cmpr. (%) lookup (µs/str) access (µs/ID)

New DA tries
XCDA-x 72.0 25.4 3.42 4.36
XCDA-y 73.3 25.3 3.41 4.29
FXCDA-x 70.2 25.6 2.66 3.50
FXCDA-y 71.7 25.2 2.70 3.54
Previous DA tries
DA 65.9 43.8 1.95 2.93
CDA 68.0 31.5 1.63 –
DALF 110.1 24.1 6.00 –
State-of-the-art dictionaries
Cent 129.5 27.7 3.59 4.14
Cent-rp 472.7 17.5 4.02 4.47
PFC 6.1 37.3 3.04 0.67
HTFC-rp (2) 5908.9 42.3 5.44 2.05
HTFC-rp (4) 7765.0 26.3 6.39 2.90
HTFC-rp (8) 12598.4 18.3 7.96 4.41
HashDAC-rp – – – –

(b) gene-DNA

Constr. (sec) Cmpr. (%) lookup (µs/str) access (µs/ID)

New DA tries
XCDA-x 5.5 38.0 1.29 1.65
XCDA-y 4.0 38.0 1.30 1.64
FXCDA-x 5.2 37.8 1.21 1.33
FXCDA-y 3.9 37.7 1.03 1.33
Previous DA tries
DA 4.5 87.4 0.58 0.88
CDA 6.0 55.3 0.46 –
DALF 7.8 33.0 0.54 –
State-of-the-art dictionaries
Cent 22.9 21.2 3.24 3.47
Cent-rp 24.4 14.2 3.18 3.26
PFC 1.0 38.4 1.68 0.42
HTFC-rp (2) 12.2 43.3 2.01 0.55
HTFC-rp (4) 10.0 27.5 2.23 0.78
HTFC-rp (8) 9.3 20.6 2.38 0.98
HashDAC-rp – – – –

ture shows that the dictionary size does not become a critical problem from
Heaps’ law (Heaps, 1978), Mart́ınez-Prieto et al. (2016) show the significance
of compressed natural language dictionaries because the size on Web collections
becomes far more than a gigabyte. Search engines requiring fast and effective re-
sponses can be supported by the compressed dictionaries with fast lookup rather
than optional access. For other natural language applications, input method ed-
itors (IMEs) also handle large dictionaries (Kudo, Hanaoka, Mukai, Tabata and
Komatsu, 2011). In particular, limited configurations such as mobile computers
need sophisticated data structures. Prefix-based lookup operations are utilized
to build a lattice (or word graph) or implement a suggestion feature for a user
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input. In more detail, so-called common-prefix-lookup operation, which returns
all strings included as prefixes of a query, is the most important to report all reg-
istered substrings in the input. The operation is often used in natural language
processing such as Japanese morphological analyses (Kudo, Yamamoto and Mat-
sumoto, 2004), especially in languages not written with a space between words.
In IMEs, the lattice is built by calling it for all suffixes in the input; therefore,
lookup is constantly carried out and its time is significant. Although access
(also called reverse-lookup) is used to support reconversion, its frequency is less.
For other applications, domain name servers map domain names to IP addresses
in large numbers, and must provide request very fast. Thus, there are many ap-
plications requiring fast lookup because it is the most primitive operation as a
dictionary structure. Our data structure can contribute much to them.

6. Conclusion

We have presented XCDA that a new compressed DA structure. Unlike the previ-
ous compressed DAs, XCDA tries can implement compressed string dictionaries
supporting fast operations. Our experimental evaluations have shown that our
dictionaries can support the fastest lookup compared to the state-of-the-art.
Moreover, the space efficiency is competitive in many cases.

While we have discussed string dictionaries, DAs can be also used to imple-
ment other data structures. For example, they include directed acyclic word
graphs (Yata, Morita, Fuketa and Aoe, 2008), deterministic finite automata
(Maeda and Mizushima, 2008; Fuketa, Morita and Aoe, 2014), ngram language
models (Yasuhara, Tanaka, Norimatsu and Yamamoto, 2013) and so on. XCDA
can contribute to their compression. For our future works, we will propose the
compression methods using XCDA. In addition, XCDA can use dynamic update
algorithms for DA tries (Morita et al., 2001; Oono, Atlam, Fuketa, Morita and
Aoe, 2003; Yata, Oono, Morita, Fuketa and Aoe, 2007). Therefore, we will also
propose dynamic XCDA tries.
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