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Abstract

Double-array structures have been widely used to implement dictionaries with
string keys. Although the space efficiency of dynamic double-array dictionaries tends
to decrease with key updates, we can still maintain high efficiency using existing
methods. However, these methods have practical problems of time and function-
ality. This paper presents several efficient rearrangement methods to solve these
problems. Through experiments using real-world datasets, we demonstrate that the
proposed rearrangement methods are much more practical than existing methods.
Keywords: Double-array trie; Dynamic dictionary; Data structure; String process-
ing

1 Introduction
An edge-labeled tree called a trie [1, 2] is widely used to store a set of strings. A trie is
constructed by merging common string prefixes. Further, registered strings are extracted
by concatenating the edge labels of root-to-leaf paths. Since there are nodes corresponding
to each string, these strings can be mapped to unique identifiers. In addition to a simple
exact matching operation, the trie can support powerful prefix-based operations used in
specific applications such as natural language processing and information retrieval [3, 4, 5].
Therefore, many applications use tries to implement dictionaries with string keys.

Currently, a double array (DA) [6, 7] is widely used to implement tries. The DA struc-
ture supports extremely fast retrieval in practical spaces. Many studies have investigated
static and dynamic DA tries. Most studies of static DA tries attempted to improve space
efficiency and retrieval speed [8, 9, 10, 11, 12]. Static DA tries are typically used for dictio-
naries without frequent key updates (i.e., insertions and deletions), such as Darts [13] and
Darts-clone [14]. With respect to dynamic DA tries, there are two main objectives. The
first objective is to improve update time [15, 16, 17, 18]. Although the original DA trie [6]
has been slow and unstable, a recent DA trie [19] enables update times that are close to
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those of a hashing dictionary, such as the C++ standard library’s std::unordered_map.
Therefore, there have been some applications using dynamic DA tries such as a full-text
search engine [20] and text-stream processing [21]. The second objective is to improve
space efficiency. A DA structure can include empty elements. Although its space effi-
ciency depends on the load factor (i.e., the proportion of non-empty elements to the total
elements), as in a hash table [22], existing methods [23, 24, 25, 26] can maintain a high
load factor.

In this paper, we describe how the methods related to the second objective have prac-
tical problems of time and functionality. We found that maintaining a high load factor
with the methods does not have many advantages. While the simplest solution is to re-
arrange a DA structure with arbitrary timing, simply applying these methods requires a
significant amount of time. Therefore, we propose several rearrangement methods and
evaluate their practical performance through experiments using read-world datasets. The
experimental results demonstrated that the proposed methods provide significantly faster
rearrangement. In addition, the proposed rearrangement methods can shorten basic dic-
tionary operation runtimes. In other words, the proposed methods can also contribute to
the first objective.

The remainder of this paper is organized as follows. In Section 2, we describe the data
structure of DA trie dictionaries and discuss existing improvement methods for dynamic
dictionaries. In Section 3, we propose our practical rearrangement methods for dynamic
DA dictionaries. In Section 4, we present our evaluation of the proposed methods exper-
imentally using real-world datasets. In Section 5, we introduce related studies pertaining
to dynamic dictionaries. Moreover, we show the values of the DA dictionaries and the
proposed methods. Section 6 presents conclusions and suggestions for future work.

2 Double-array trie dictionaries
This section describes the structure of the DA trie dictionary and related methods. In
this paper, the number of trie nodes is denoted as n. String keys are drawn from a
finite alphabet Σ = {0, 1, . . . , σ − 1}. Functions bac and dae denote the largest integer
not greater than a and the smallest integer not less than a, respectively. For example,
b2.4c = 2 and d2.4e = 3. Note that the base of the logarithm is 2 throughout this paper.

2.1 Data structure

A DA structure [6] represents a trie using base and check arrays, where base[s] and
check[s] correspond to node s. The base and check element corresponding to node s
is denoted as element s. Assuming the existence of an edge from internal node s to node
t with label c, the DA satisfies the following equations:

base[s]⊕ c = t and check[t] = s. (1)

In other words, the DA can find child t from node s with label c by the following two
steps: the child is obtained by t ← base[s] ⊕ c; and we can identify whether the child
exists by comparing check[t] to s. Parent s of node t is simply obtained by check[t].
The most significant advantage of DAs is the extremely fast node-to-node traversal.
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base and check can include empty elements to satisfy Eq. (1). Here, empty[s] ∈
{1, 0} indicates whether element s is empty. As empty elements arise in the internal base
and check elements, empty[0] = empty[N−1] = 0 always holds, where N is the length
of the array. Note that element 0 always corresponds to the root. A set of addresses of
empty elements is denoted as R = {0 ≤ s < N | empty[s] = 1}; i.e., N = n + m holds,
where m = |R| is the number of empty elements. The load factor of base and check is
denoted as α = n/N (0 ≤ α ≤ 1).

2.2 Dictionary implementation

A minimal-prefix trie (MP-trie) [6, 7, 27] is often used to implement dictionaries. The
MP-trie maintains only minimal prefixes to identify each key as nodes and the remaining
suffixes as strings separately. The separated strings are stored in a tail array. Links to
tail are kept in the base values of leaves. Since the number of nodes is fewer compared to
a normal trie, the MP-trie can implement a compact DA dictionary. Moreover, sequential
search on tail can improve retrieval speed. In dynamic dictionaries, useless spaces can
arise in tail due to key insertions and deletions. We refer to these spaces as empty spaces
to differentiate them from the empty elements of base and check. The load factor of
tail is denoted as 0 ≤ β ≤ 1.

Figure 1 shows an example of an MP-trie dictionary and the DA representation for key-
value pairs (a#, 0), (abaa#, 1), (abcabc#, 2), (baab#, 3), and (bac#, 4) from the alphabet
{# = 0, a = 1, b = 2, c = 3}. The terminator # (basically, the ASCII zero code) is added
such that each leaf corresponds to each key. The DA dictionary uses a leaf array such
that leaf[s] ∈ {1, 0} indicates whether element s exists for a leaf node or not. If node s
has a link to tail, the link is provided by base[s] in leaf[s] = 1. For example, the link
to tail[9..10] = b# is provided by base[5] = 9 in leaf[5] = 1. Note that child and sib
are introduced in Section 2.3. In Figure 1, the empty elements and spaces are shaded.
The load factors are α = 10/13 = 0.77 and β = 13/17 = 0.76. The empty elements are
chained using the base and check values, as explained in Section 2.3.

The example dictionary embeds associated values in a fixed-length space on tail after
the terminator, e.g., tail[11] = 3. If a key is registered without tail, the associated
value is embedded in the corresponding leaf base element, e.g., base[4] = 0. Embedding
is the most practical dictionary implementation using dynamic DA tries. This is because
node addresses change frequently during updates. On the other hand, static tries can
implement mapping keys to unique identifiers using Rank/Select operations [12].

Basic operations. Here, we define three basic dictionary operations: Search, Insert,
and Delete. In addition, we describe implementation examples for the dictionary shown
in Figure 1.

Search(key) returns the associated value if key is registered. This is implemented by
traversing root-to-leaf nodes and by checking tail. Suppose that Search(abcabc#) = 2
is performed. First, child 1 of root 0 is found as base[0]⊕a = 0⊕1 = 1 and check[1] = 0.
Similarly, nodes 6 and 10 are found as follows: base[1] ⊕ b = 4 ⊕ 2 = 6, check[6] = 1,
base[6] ⊕ c = 9 ⊕ 3 = 10, and check[10] = 6. Equation leaf[10] = 1 means that the
other characters can be found in tail starting from base[10] = 4. From tail[4..7] = abc#,
the key is registered and the value tail[8] = 2 is returned.
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Figure 1: MP-trie dictionary and the corresponding DA

Insert(key, val) registers key and associates val to the key. This is implemented by
defining new nodes for the key and adding a new suffix to tail. If collisions of elements
occur, they are solved by relocating the elements. Suppose that Insert(abccb#, 5) is
performed. A part of the resulting dictionary is shown in Figure 2. First, new branches
labeled a and c from node 10 are added. Then, a new leaf node labeled a is defined and
linked to tail[5]. Consequently, tail[4] becomes empty. At the same time, another new
leaf node labeled c is also defined. The suffix b# and value 5 are appended to the end of
tail, and the node forms a link to tail[17].

Delete(key) removes key from the dictionary. This is implemented by removing the
nodes that correspond to the key. Suppose that Delete(abcabc#) is performed. A part
of the resulting dictionary is shown in Figure 3. First, node 10 corresponding to the key
is removed by emptying the element. At the same time, node 6 becomes a new leaf for
key abaa# as the structure of the minimal-prefix keys is changed. The new suffix aa# and
value 1 are appended to the end of tail by transferring the edge label a and tail[0..2].
This process is completed when base[6] maintains the link to tail[17] and element 8
becomes empty. As a result, empty elements 8 and 10, and empty spaces tail[0..2] and
tail[4..8] are formed.
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Figure 2: Result of Insert(abccb#, 5) in the dictionary shown in Figure 1

Figure 3: Result of Delete(abcabc#) in the dictionary shown in Figure 1

2.3 Fast update methods

Two bottlenecks are typically observed when updating DA structures. One is the time
taken to scan the empty elements, and the other is the time taken for enumeration of the
edge labels. Below we present well-used methods to improve these bottlenecks.

Empty-link method. When new nodes are inserted, the empty elements must be
searched to locate the nodes. The original DA [6] performs this search by scanning
base and check elements linearly in O(N) time; however, this time turns into a critical
problem for a large dictionary. Therefore, general implementations use the empty-link
method (ELM) [15, 26]. ELM builds a doubly circular linked list of empty elements called
an empty list.

Let R = {r1, r2, . . . , rm}. The ELM builds the empty list using empty base and
check elements as follows:

base[ri] =

{
ri+1 (1 ≤ i < m)

r1 (i = m)
and check[ri] =

{
ri−1 (1 < i ≤ m)

rm (i = 1)
.

In other words, the successor and predecessor of ri are obtained from base[ri] and
check[ri], respectively. The ELM can scan R in O(m) time when the first empty el-
ement is maintained as the list head. For example, in Figure 1, empty elements 3, 9, and
11 are scanned as base[3] = 9, base[9] = 11, and base[11] = 3. The ELM utilizes empty
elements and thus does not have any disadvantages in terms of space efficiency.

When updating an empty list, the doubly circular linkage can support the adding and
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Figure 4: Examples of updates with the ELM

removing of an empty element in constant time as follows. Adding a new empty element
is implemented by inserting the element between the first and last elements of the list.
Removing an empty element is achieved by re-chaining the previous and next elements.
Figure 4 shows an example of updating a DA where R = {3, 9, 11}. In this example,
element 3 is the first empty element and is kept in the variable head. The last element, or
element 11, is given by check[head]. When a new empty element 5 is added, it is inserted
between the first and last elements as base[5] ← 3, check[3] ← 5, base[11] ← 5, and
check[5] ← 11. Note that the resulting empty elements are scanned in the order of
3, 9, 11, and 5. In other words, the order of r1, r2, . . . , rm does not correspond to the
address order of base and check. When the empty element 9 is removed from the DA,
the previous element check[9] = 3 and the next element base[9] = 11 are re-chained as
base[3]← 11 and check[11]← 3. The updates are performed in constant time.

Node-link method. Let Edges(s) be an operation returning a set of edge labels from
node s. For example, Edges(1) = {#, b} in Figure 1. A simple implementation performs
Edges(s) in O(σ) time by checking the children from node s for all characters in Σ. The
time required for this implementation is not significant as σ ≤ 256 when byte characters
are used. However, the time required can become a critical bottleneck since Edges is
often called during key updates.

This problem can be solved by the node-link method (NLM) [16]. NLM uses additional
child and sib arrays such that child[s] stores the edge label between node s and its
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first child, and sib[s] stores the edge label between the next sibling of node s and its
parent. The NLM can obtain the first child and the next sibling of node s in constant
time by base[s] ⊕ child[s] and base[check[s]] ⊕ sib[s], respectively. In other words,
E ← Edges(s) is performed in O(|E|) time. For example, Figure 1 shows child and sib
for the trie. In this example, Edges(1) = {#, b} is performed as follows. The first edge
label # is given by child[1] = #; the first child 4 is calculated by base[1] ⊕ child[1] =
4 ⊕ # = 4; the second edge label b is given by sib[4] = b; and the second child 6 is
calculated by base[1]⊕ sib[4] = 4⊕ b = 6. It is evident that node 6 is the last child from
sib[6] = # = child[1]. However, the NLM involves a trade-off between update time and
space efficiency on account of its use of 2Ndlog σe additional bits.

2.4 Improvement of space efficiency

Although repeating Insert and Delete reduces load factors α and β, some additional
improvement methods have been proposed for each load factor.

base and check. Morita et al. [24] proposed a rearrangement method to improve load
factor α by packing the arrays. This method eliminates empty elements by relocating the
rearmost element and its siblings known as compression elements to the empty elements.
While rearranging the arrays with each Delete operation can help to maintain a high
load factor α, some empty elements always remain. This is because elimination is not
possible if there are fewer empty elements than compression elements. Oono et al. [25]
improved Morita’s method by focusing on single nodes with no siblings. Oono’s method
applies empty elements and single elements to the relocation addresses. This method can
maintain a high load factor α in a normal trie that includes many single nodes; however,
it does not work efficiently in an MP-trie as the many single nodes in a normal trie are
replaced into strings. Therefore, Yata et al. [26] presented an adaptive method that
uses elements with fewer siblings than the rearmost element as well as empty and single
elements. Available literature [26] shows that this adaptive method can maintain α ' 1.0
in MP-tries from experiments using English and Japanese datasets.

Here, we describe a Yata’s adaptive procedure, namely Pack. The pseudocode for
Pack is shown in Algorithm 1. Pack searches the relocation addresses of the compression
elements using EXCheck, which is shown in Algorithm 2. EXCheck then returns the
base value indicating the addresses. Note that EXCheck in Algorithm 2 uses ELM.
Other operations used in Pack and EXCheck are described as follows.

• Shelter(s, base, E) locates elements in {u ∈ U | empty[u] = 0} and their siblings
to empty elements in R − {u ∈ U | empty[u] = 1}, where U = {base⊕ c | c ∈ E}.
If element s is located, the located address is returned; otherwise, s is returned.

• Move(s, base, E) locates elements base[s] ⊕ c to empty elements base ⊕ c for all
characters c ∈ E.

• IsTarget(base, E) returns true if addresses s ← base ⊕ c satisfy the conditions
for all characters c ∈ E: 0 < s < N , empty[s] = 1, and |Edges(check[s])| < |E|;
otherwise, it returns false.
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Algorithm 1 Pack
1: while R 6= ∅ do
2: s← check[N − 1]
3: E ← Edges(s)
4: base← EXCheck(E)
5: if base = −1 then
6: break
7: end if
8: s← Shelter(s, base,E)
9: Move(s, base,E)

10: end while

Algorithm 2 EXCheck(E) using ELM. E is a set of edge labels.
1: r ← head
2: repeat
3: base← r ⊕ E[0] . E[0] is an arbitrary character in E
4: if IsTarget(base, E) = true then
5: return base
6: end if
7: r ← base[r] . a next empty element
8: until r = head
9: return −1

Essentially, Pack improves the load factor α by repeating the following steps. EX-
Check obtains the relocation addresses of the compression elements; Shelter solves
collisions during relocation; and Move eliminates empty elements by relocating the com-
pression elements. These steps are depicted in Figure 5. EXCheck scans R using ELM
and checks base values calculated from each empty element using IsTarget. IsTar-
get checks whether the received base value is appropriate to indicate the relocation
addresses in the adaptive method. Since the algorithm is complex, please refer to the
original literature [26] for more details.

tail. Dorji et al. [23] proposed two methods to improve the load factor β. The first
method embeds short suffixes into leaf base elements rather than storing them in tail.

Figure 5: Steps of Pack
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Figure 6: Example of Dorji’s second method demonstrating the insertion of suffix b# and
value 5

In addition to saving tail space, this method can reduce the number of tail updates.
The second method allows reuse of the empty spaces by searching tail sequentially.
However, simple sequential search requires significant amounts of time; therefore, the
method combines three techniques.

1. A suffix longer than the threshold length is appended to the end of tail in the same
manner as the conventional update.

2. The search begins from the position where the last successful search ended.

3. The search proceeds by skipping every l−1 elements until an empty space is found.
Here, l denotes the suffix length.

Figure 6 shows an example of the second method. This method marks any empty space
with a white space; however, such marking is unsuitable for dictionary implementation.

3 Practical rearrangement methods
While the existing methods described in Section 2.4 can maintain high load factors α and
β, these methods present practical problems related to time and functionality.

• The combination of Delete and Pack requires significantly more time compared
to simple Delete since the algorithm is complex and involves many operations.
In addition, empty elements are reused during Insert. Therefore, maintaining the
high load factor α by sacrificing Delete time does not have many advantages.

• Dorji’s first method cannot implement trie dictionaries, such as that shown in Fig-
ure 1, as the associated values cannot be embedded. In addition, in Dorji’s second
method, empty marking cannot be used for dictionary implementation since any
character can be used to represent associated values. In other words, the third tech-
nique cannot be used because the empty spaces are not directly identified. Previous
results [23] show that the method presents problems related to time requirements
for large datasets. If the third technique is excluded, the problem becomes much
more critical.
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Algorithm 3 EXCheck(E) using BLM. E is a set of edge labels.
1: b← head . head block address
2: repeat
3: r ← head[b]
4: repeat
5: base← r ⊕ E[0] . E[0] is an arbitrary character in E
6: if IsTarget(base, E) = true then
7: return base
8: end if
9: r ← base[r] . next empty element

10: until b = head[b]
11: b← next[b] . next block
12: until b = head
13: return −1

To address these problems, the simplest solution is to rearrange the DA when neces-
sary, e.g., when a dictionary is written to a file and the load factors exceed the predefined
lower limits. This section proposes some efficient rearrangement methods. Sections 3.1
and 3.2 describe rearranging base and check. tail is simply rearranged by transferring
suffixes for all leaves to a new tail.

3.1 Cache-friendly implementation of the ELM

While the ELM supports scanning R in O(m) time, the scan order is random in base and
check, as shown in Figure 4. Therefore, cache misses can occur frequently in EXCheck
when there are many empty elements. We solve this problem using the block-link method
(BLM), which implements empty-linkage in the following two steps: the first step parti-
tions base and check into blocks of length L and the second step builds empty-linkages
for each block. More precisely, the method builds two types of empty lists for blocks,
which include any empty elements, as well as empty elements in each block. We refer to
the former as the block list. The latter comprises small empty lists obtained using the
ELM for each block.

Let Rb be a set of addresses of the empty elements in block b, that is, R =
⋃
b<dN/LeRb.

The block list consists of three additional arrays: head[b] keeps an arbitrary address in
Rb as the first empty element; next[b] keeps the next linking block address of block b; and
prev[b] keeps the previous linking block address of block b. The block list is also updated
in constant time in the same manner as the ELM. The BLM scans R by visiting each
block b and by scanning Rb. Since the addresses in Rb are in a constant area of memory,
the BLM can improve the cache efficiency of the ELM. Figure 7 shows linkage examples
using ELM and BLM with L = 4. While ELM scans R in the order of 4, 9, 14, 8, 6, and
11, BLM can scan R in the order of 4, 6, 9, 11, 8, and 14. Algorithm 3 shows EXCheck
using BLM. In Algorithm 3, the first loop visits each block using next, and the second
loop scans empty elements in the block using base. The algorithm of the second loop is
the same as in the ELM version; however, the scan area remains constant.

For the block length, L = 2dlog σe is efficient for the following reasons. For base ←
r ⊕ E[0] in EXCheck, the base is the result of a bitwise XOR operation on the lowest
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(a) ELM

(b) BLM

Figure 7: Examples of the ELM and BLM

dlog σe bits of r. In other words, for L = 2dlog σe, both r and base are integers indicating
the same block address since br/Lc = bbase/Lc. IsTarget searches relocation addresses
using the base; thus, addresses s← base⊕ c for all characters c ∈ E are also integers that
indicate the same block address. Therefore, when calling IsTarget for arbitrary ri, there
is a strong probability that elements in the block bri/Lc will be present in cache memory.
If elements ri+1, ri+2, . . . are in the same block, cache efficiency can be improved. In the
experiments discussed in Section 4, our implementation uses L = 2dlog 256e = 256 for all
datasets since σ ≤ 256 is always satisfied when using single-byte characters, while σ is
frequently not pre-given in practical dynamic applications. For L = 256, the additional
head, next, and prev arrays use only 3 · 32/256 = 0.375 bits for each base or check
element when assuming 32-bit integers to indicate addresses. This space is negligibly
small compared to the total space of base and check using 64 bits for each element.
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Related studies. For block linkage, the previous literature [16] has proposed a similar
method1. This method implements recommendation of appropriate search areas for query
keys by classifying blocks. This reduces the average number of visiting empty elements.
Other related studies [17, 18] have also proposed methods to reduce the number of visits
using different approaches. However, applying such methods to Pack is difficult as they
are designed for simple key insertion. Therefore, our experiments did not implement such
methods.

3.2 Static reconstruction

Although Pack improves the load factor α by eliminating empty elements, the algorithm
is complex and includes many operations. On the other hand, rebuilding the DA dictio-
nary from scratch is a very simple approach. Generally, this is called static reconstruction
since the DA dictionary is built on the condition that all registered keys are pre-given.

Algorithm 4 shows the static reconstruction pseudocode. In Rebuild, a new dictio-
nary is built from the original dictionary. The new dictionary registers the same keys and
associated values. The algorithm is described as follows. Rebuild traverses nodes in the
original trie and re-determines the base and check values for each node (lines 8–15).
To determine a new base value, Rebuild uses XCheck(E), which returns an integer
base such that empty[base ⊕ c] = 1 for all characters c ∈ E. XCheck determines the
base value by scanning R in the same manner as EXCheck; however, Rebuild does
not require to solve node collisions using Shelter. When a leaf is reached, the suffix and
associated value are transferred to the new tail array (lines 17–23).

In the algorithm, node addresses are redefined in the depth-first order using a stack.
Although a queue can be substituted, node addresses are redefined in the breadth-first
order. Generally, such node arrangement causes frequent cache misses in node-to-node
traversal near leaves. Thus, most public implementations of a static DA trie define node
addresses in the depth-first order. While recursive processing can also define node ad-
dresses in the depth-first order, the algorithm considers stack overflow for large datasets,
especially in the concurrent rearrangement introduced in Section 3.3.

An advantage of Rebuild is that a pair of parent and child nodes can be proximally
positioned as it is not necessary to relocate elements to solve collisions. In other words,
Rebuild can improve the cache efficiency of node-to-node traversal. In fact, the ex-
perimental results in [16] show that static DA dictionaries enable faster retrieval than
DA dictionaries built by sequentially inserting random keys. In addition to Search, the
cache improvement contributes to improved Insert and Delete as they also retrieve the
received key. On the other hand, Rebuild requires a larger working space than Pack as
it uses large temporal structures, such as base′, check′, and ST . Section 4.1 provides
estimations of each working space.

3.3 Concurrent rearrangement

We can shorten rearrangement time by concurrent processing. The proposed method
called the trie division method (TDM) enables concurrent rearrangement by dividing a

1Although the literature [16] is written in Japanese, Yoshinaga and Kitsuregawa [21] have introduced
the proposed methods in English.
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Algorithm 4 Rebuild
1: Create empty arrays base′, check′, empty′, leaf′ and tail′ . They are temporal
2: Create an empty stack ST for storing node address pairs
3: Push root pair (0, 0) to ST
4: empty′[0]← 0
5: while ST is not empty do
6: Pop node address pair (s, s′) from ST
7: if leaf[s] = 0 then
8: E ← Edges(s) for the original dictionary
9: base′[s′]← XCheck(E) for the new dictionary

10: for all c ∈ E do
11: t′ ← base′[s′]⊕ c
12: check[t′]← s′

13: empty′[t′]← 0
14: Push child pair (base[s]⊕ c, t′) to ST
15: end for
16: else
17: leaf′[s′]← 1
18: if base[check[s]]⊕ s = # then . Leaf s has an associated value
19: base′[s′]← base[s]
20: else
21: Transfer the suffix and associated value from tail[base[s]] at the end of tail′

22: base′[s′]← the start address of the suffix on tail′

23: end if
24: end if
25: end while
26: Swap the temporal arrays base′,check′, . . . and the original ones base,check, . . .

trie into a prefix subtrie and suffix subtries, as shown in Figure 8. In the figure, the trie
is divided based on the highlighted nodes, which are referred to as division nodes. The
prefix subtrie has a common root for all registered keys. The leaves corresponding to the
division nodes maintain links to the suffix subtries. The prefix subtrie is built as a normal
trie because the structure with leaves having links overlaps the MP-trie. In the suffix
subtries, each root corresponds to each division node. The suffix subtries are built as the
MP-trie.

The TDM sets a rule to determine the division nodes based on the features of the
registered keys. The important consideration for the rule is that many suffix subtries
do not occur. For keys with no special feature in the prefixes, it is only necessary to
determine nodes from the root as division nodes. In other words, a key is separated at
the first character, as shown in Figure 8b. As the maximum number of suffix subtries is
σ = 256 in practice, concurrent processing will work efficiently. For keys with any feature
in the prefixes, such as URLs, particular prefixes are should be preregistered. Then, nodes
from the predefined nodes are defined as division nodes. Figure 9 shows an example of a
prefix subtrie preregistering http:// and https://. If keys http://a..., http://b...,
and https://c... are registered, the nodes are defined from edges with labels a, b, and
c as division nodes. The TDM is similar to the technique used in the DA language models
[28, 29] for static tries with a large alphabet.
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(a) Without the TDM

(b) With the TDM

Figure 8: Examples of the TDM for the MP-trie in Figure 1

Figure 9: Example of a prefix subtrie preregistering http:// and https://
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Since the TDM can implement dictionary operations by traversing nodes in the order
of prefix and suffix subtries, no major changes to the algorithms are required; however,
there are two important minor changes for Insert and Delete in the prefix subtrie.
For Insert, if the key registration is performed within the prefix subtrie, the value is
embedded in a leaf of the prefix subtrie. For example, in Figure 9, when Insert(ht#, 1)
is performed, we append a leaf with the label # from the node reached by ht, and we
embed the value 1 to the base value. For Delete, if a suffix subtrie becomes empty,
only the corresponding division node is removed. Predefined nodes are not removed for
future insertions. Here, suppose that Delete(https://c...) is performed in Figure 9.
As the suffix subtrie becomes empty, only the division node with the label c is removed
and the nodes predefined with labels s:// are not removed.

4 Experimental evaluation
This section analyzes the practical performance of various combinations of rearrangement
methods using real-world datasets. In these experiments, we assessed the rearrangement
times and working spaces for some configuration dictionaries. Furthermore, we measured
the runtimes of Search after rearrangement to evaluate the cache improvement from
Rebuild. The source code is available at https://github.com/kamp78/ddd.

4.1 Settings

We carried out the experiments using Quad-core Intel Core i7 4.0 GHz, with 16 GB RAM
(L2 cache: 256 KB; L3 cache: 8 MB). The methods were implemented in C++ and
compiled using Apple LLVM version 8 (clang-8) with optimization -O3. The runtimes
were measured using std::chrono::duration_cast. To measure the working spaces, we
used the /usr/bin/time command and referred to the maximum resident set size. We
used std::thread for the TDM with eight threads.

Datasets. The dictionaries were built from the following real-world datasets.

• geonames: Geographic names on the asciiname column from the GeoNames dump
(http://download.geonames.org/export/dump/allCountries.zip).

• enwiki: All page titles from the English Wikipedia of February 2015 (https:
//dumps.wikimedia.org/enwiki/).

• nwc: Japanese word ngrams in the Nihongo Web Corpus 2010 (http://dist.
s-yata.jp/corpus/nwc2010/ngrams/word/over999/filelist).

• indochina: URLs of a 2004 crawl of the country domains of Indochina performed
by UbiCrawler [30] (http://data.law.di.unimi.it/webdata/indochina-2004/
indochina-2004.urls.gz).

Table 1 summarizes each dataset. Here, Size is the raw size in MiB, Keys is the
number of different string keys, Ave. length is the average number of characters per
string including a terminator, Chars is the number of different characters in the dataset,
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Table 1: Datasets

Size Keys Ave. length Chars Nodes Singles Subtries

geonames 101.2 6,784,722 15.6 96 12,216,182 19.1 81
enwiki 227.2 11,519,354 20.7 199 27,308,602 36.6 108
nwc 439.4 20,722,756 22.2 180 60,554,010 42.5 115
indochina 612.9 7,414,866 86.7 98 22,572,605 55.2 33

Table 2: Possible combinations of rearrangement methods

ELM ELM + NLM BLM BLM + NLM

Pack PE PEN PB PBN
Rebuild RE REN RB RBN

ELM + TDM ELM + NLM + TDM BLM + TDM BLM + NLM + TDM

Pack PET PENT PBT PBNT
Rebuild RET RENT RBT RBNT

Nodes is the number of nodes in the MP-trie, Singles is the percentage of single nodes, and
Subtries is the number of subtries with the TDM. All datasets were encoded in UTF-8.

Data structures. For rearrangement methods, we evaluated all possible combinations
shown in Table 2 (16 patterns in total). This section refers to each combination as the
name composed of the initial letters. PE and PEN are the conventional methods, and the
others are the proposed methods.

For the TDM, since all keys in indochina start with the prefix http://, we preregis-
tered the prefix. In the other datasets, we separated a key at the first character, as shown
in Figure 8b. Table 3 shows the top 10 results related to the frequency of appearance of
characters for each divided point. For the nwc and indochina datasets, the frequency
of a particular character is very large. The ASCII code 227 is the first byte character
generally used to represent Japanese letters in UTF-8. The ASCII code 119 is the letter w
of http://www.... Thus, a particular suffix subtrie becomes very large. Note that such
imbalance is also an evaluation item.

We prepared ten patterns of load factors for each dictionary by randomly inserting all
keys and by randomly deleting the keys. Figure 10 shows the load factors α and β of PE
for each dataset before rearrangement. The dictionaries become increasingly sparse. In
addition, Figure 11 shows that the tail length also becomes increasingly large, similar
to the example shown in Figure 3. The length of base and check, or N , was nearly
unchanged because the arrays can shrink only when the rearmost element is removed.

Implementation details. To measure the rearrangement performance precisely, it is
important that no extra memory allocation is made for expanding arrays, especially for
the working space. For tail, both Pack and Rebuild simply transfer non-empty spaces
to a new array. Given an original tail whose length is M and load factor is β, we
can estimate the new tail length as M · β. Therefore, we only require initial memory
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Table 3: Top 10 results in frequency of appearance of characters for each divided point

geonames enwiki nwc indochina
Rank ASCII % ASCII % ASCII % ASCII %

1 83 9.7 83 8.7 227 51.6 119 62.9
2 66 8.3 67 7.2 229 10.6 115 4.0
3 75 7.2 65 6.9 230 8.1 116 3.1
4 77 6.9 77 6.6 60 7.4 99 2.9
5 67 6.8 84 6.0 231 5.1 109 2.6
6 76 5.4 76 5.6 232 4.6 114 2.4
7 80 5.4 66 5.5 228 4.3 105 2.2
8 84 4.8 80 5.2 233 3.4 100 2.0
9 65 4.6 68 4.1 40 0.7 112 2.0
10 72 4.4 82 3.9 226 0.5 97 1.8

allocation.
On the other hand, we cannot accurately estimate the number of elements of base and

check after rearrangement since α depends on the trie configuration and the order of the
defining nodes. Pack does not require this consideration because the node rearrangement
is performed within the original arrays, that is, within N elements. However, Rebuild
must determine the initial memory allocation size of the temporal structures. In the
experiments, we reserved an additional 1024 elements for unknown empty elements as α
was always improved to greater than 0.99 in the preliminary experiments. In other words,
we initially reserved N ·α+ 1024 elements for base′ and check′. Here, N ·α denotes the
number of nodes (= n). Although the number is heuristic, extra memory allocation was
never required in these experiments. For stack ST , we initially reserved sufficient N · α
units since this is necessary to traverse nodes.

We present the estimations of each working space before the final results are shown
in Section 4.2. Pack rearranges nodes in O(N) space. Rebuild rearranges nodes in
O(N(1 + α)) space because the original node components use O(N) space and the new
node components useO(N ·α) space. For tail rearrangement, both of Pack and Rebuild
use O(M) +O(M · β) = O(M(1 + β)) space. The above is summarized as follows. Pack
uses O(N + M(1 + β)) space and Rebuild uses O(N(1 + α) + M(1 + β)) space. Here,
0 ≤ α ≤ 1 and 0 ≤ β ≤ 1. Although the working space of Pack is obviously smaller than
that of Rebuild, the difference becomes small according to decreasing α.

4.2 Results

Figures 12, 13, and 14 show the experimental results for rearrangement times, working
spaces, and search times, respectively. The y-axis in Figure 12 uses a logarithmic scale of
2. The search times were measured for all registered keys in each dictionary at random and
were averaged over 10 runs. Figure 12 omits the results of combinations using Rebuild
and BLM (i.e., RB, RBN, RBT, and RBNT) as there were no distinct differences compared
to the NLM versions. Figure 13 omits the results of combinations using BLM (i.e., PB,
PBN, PBT, PBNT, RB, RBN, RBT, and RBNT) since BLM requires only negligibly
small space. Figure 14 omits the results of combinations using NLM and BLM (except
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Figure 10: Load factors of PE for each dataset

PE, PET, RE, and RET) as these methods are not related to Search. In all cases, the
load factors were improved to α ' 1.0 and β = 1.0 after rearrangement.

Pack time observations. First, we focus on the results obtained with enwiki at a
deletion rate of 50%. Here, the differences are obvious. For the conventional methods,
PE uses 137 s and PEN does not improve the time since Edges time is not the main
problem. On the other hand, PB and PBN significantly improve the time to 7 s and 4 s,
respectively. Thus, the cache inefficiency of ELM and the usefulness of BLM are obvious.
TDM also provides large improvements. PET, PENT, PBT, and PBNT are 35, 42, 6, and
9 times faster compared to each method without TDM, respectively. When comparing
the best cases of the conventional and proposed methods, PBNT performs Pack in 0.5 s
that is 260 times faster than PEN.

We also focus on the results obtained with indochina at a deletion rate of 50%. The
improvement rates obtained by BLM are obviously smaller compared to the other datasets.
When comparing ELM and BLM, PB is 1.5 times faster than PE, PBN is 2.1 times
faster than PEN, PBT is 1.4 times faster than PET, and PBNT is 1.9 times faster than
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PENT. These results are the outcome of the rate of single nodes. When Pack relocates
a single element where |E| = 1 in Algorithm 1, EXCheck can directly select an empty
element r ← head in Algorithm 2 or r ← head[head] in Algorithm 3 as the relocation
address. In other words, EXCheck does not need to scan R as IsTarget always returns
true. Therefore, the improvement rates obtained by BLM with indochina are smaller
compared to those with enwiki. However, Pack is performed quickly.

Overall, PBNT always provides the best results. The largest improvement rates from
PEN to PBNT with the geonames, enwiki, nwc, and indochina datasets are 218,
260, 32, and 3 times, respectively. For nwc and indochina, the ratios are relatively
small, since TDM did not work efficiently as seen from the imbalances in Table 3. As
for the absolute runtimes, PBNT performs Pack in up to 0.9, 0.5, 3.0, and 1.3 s with
the geonames, enwiki, nwc, and indochina datasets, respectively. Therefore, the
proposed Pack is useful under any conditions, while the conventional methods require
more than a min under many conditions.

Rebuild time observations. In all cases, the simplest implementation, namely RE,
is the slowest, and the most complex implementation, namely RENT, is the fastest. At
a deletion rate of 0% with the geonames, enwiki, nwc, and indochina datasets,
the differences are 8.4, 9.2, 3.4, and 2.4 times, respectively. When comparing RET and
REN, RET is faster than REN with geonames and enwiki; however, the results are
reversed with nwc and indochina. In other words, the advantage of NLM outperforms
that of TDM due to the imbalances. Relative to the absolute runtimes, RENT performs
Rebuild in up to 0.4, 0.8, 4.2, and 2.5 s with the geonames, enwiki, nwc, and
indochina datasets, respectively. Therefore, the enhanced Rebuild is very useful under
any conditions, similar to Pack.

Comparison of Pack and Rebuild times. Here, we compare PBNT and RENT,
which provide the best performance. With the smallest dataset, namely geonames,
RENT is often faster as the number of nodes is small. With enwiki and nwc, the results
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are reversed at a deletion rate of approximately 35–40%. With indochina, the result is
reversed at a deletion rate of approximately 50% as Pack is performed quickly. As shown
in Figure 10, these reversals occur in approximately 0.5 ≤ α ≤ 0.6.

In conclusion, Rebuild is a good choice for small datasets, such as geonames. For
large datasets, Pack and Rebuild are more effective according to load factor α. It is
difficult to accurately estimate the best threshold load factor; however, both will provide
high performance in approximately 0.5 ≤ α ≤ 0.6.

Working space observations. All the results appear to be based on estimations. We
have not presented the results obtained by NLM since the additional space of 2Ndlog σe
bits is simply included. When comparing PE and RE, PE is 1.44, 1.45, 1.67, and 1.35
times smaller than RE at a deletion rate of 0% with the geonames, enwiki, nwc,
and indochina datasets, respectively. The ratio of nwc is relatively large because the
number of nodes is large, as shown in Table 1. On the other hand, the ratios are close to
1.0 according to α. At a deletion rate of 90% with the geonames, enwiki, nwc, and
indochina datasets, the ratios are 1.04, 1.04, 1.05, and 1.05 times, respectively.

It is worth noting that TDM contributes to the reduction of working space. TDM
rearranges small subtries in given threads; thus, the temporal spaces for each process
are small. When comparing PE and PET with geonames and enwiki, TDM reduces
the working spaces by up to 1.26 and 1.23 times, respectively. When comparing RE and
RET with geonames and enwiki, TDM reduces the working spaces by up to 1.19 and
1.23 times, respectively. On the other hand, the reduction ratios obtained with nwc and
indochina are relatively small due to the imbalances. When comparing PE and PET
with nwc and indochina, TDM reduces the working spaces by up to 1.04 and 1.05
times, respectively. When comparing RE and RET with nwc and indochina, TDM
reduces the working spaces by up to 1.08 and 1.19 times, respectively.

In conclusion, Pack is efficient for saving working space. TDM also contributes to
the saving. For sparse dictionaries, Rebuild using TDM is a good choice.

Search time observations. There are distinct differences between Pack and Re-
build since Rebuild can contribute to the cache improvement of node-to-node traversal.
When comparing PE and RE, RE performs Search up to 1.5, 1.8, 2.1, and 2.9 times faster
than PE with the geonames, enwiki, nwc, and indochina datasets, respectively. The
result obtained with indochina is better because the number of node-to-node traversals
is large. The obtained results are also related to update times since both Insert and
Delete retrieve the received key. Therefore, it is possible to use Rebuild to improve
all dictionary operations.

Synthetic evaluation. Finally, we present a synthetic evaluation of the proposed re-
arrangement methods. Pack and Rebuild should be used as the situation demands. If
the focus is on saving the working space, Pack is a better choice. Rebuild is a better
choice to improve the runtimes of dictionary operations. On the other hand, the working
space of Rebuild is close to that of Pack when the dictionary is sparse. In terms of
rearrangement time, Rebuild is more useful for sparse dictionaries for any datasets.

In all aspects, BLM and TDM provide many advantages without any disadvantage.
Therefore, these methods can be applied as new default components for dynamic DA dic-
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tionary implementations. Note that it is necessary to determine appropriate pre-registered
prefixes when using TDM. The results show that it would be better to preregister the
ASCII code 227 when storing Japanese keywords and add http://www to the preregis-
tered prefixes when storing URLs.
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5 Related work
In this section, we summarize studies related to dynamic trie dictionaries and demonstrate
the value of DA dictionaries. For major practical implementations, the classical approach
is to use a ternary search tree (TST) [31], which combines the attributes of binary search
trees and digital search tries. It performs Search in O(log |K| + k) time using three
pointers and one character for each node, where |K| is the number of keys and k is the
query length. Compared to DAs that support O(k) time using two pointers, TSTs are not
competitive. Heinz et al. [32] proposed the burst trie that achieves high space efficiency
by selectively collapsing chains of trie nodes into small buckets of strings that share a
common prefix. Askitis and Sinha [33] proposed the HAT-trie that improves the burst
trie using cache-conscious hash tables. Other dictionary structures include the adaptive
radix tree [34] and the lexicographic tree [35]. In a recent study, Mavlyutov et al. [36]
concluded that the HAT-trie is an efficient data structure for managing URI data from
comparative experiments involving various data structures; however, they did not evaluate
DA dictionaries.

Yoshinaga [19] provided experimental results of a comparison of DA and related dic-
tionaries for text and binary datasets. In this study, state-of-the-art DA dictionaries
were implemented using the Cedar library. The related dictionaries were implemented
using various open source software, such as Hat-Trie [37] and Sparsehash [38]. The re-
sults showed that the Cedar library excels in terms of space efficiency and search time.
Moreover, its insertion time approached that of the hashing dictionaries and outperformed
other trie-based dictionaries, with the exception of Judy trie SL [39]. Considering that trie
dictionaries can support powerful prefix-based operations required in many applications
[3, 4, 5], DA tries offer great value as a dictionary structure. For such DA dictionaries,
repeating updates commonly reduces space efficiency. Therefore, the proposed methods
and the results given in Section 4 can contribute significantly to useful implementations
of dynamic dictionaries.

Finally, we discuss recent active studies of dynamic trie representations in compressed
space. Several studies have provided asymptotic worst-case results [40, 41, 42]. Poyias
and Raman [43] have proposed a practical succinct trie representation named m-Bonsai,
which is a variant of the Bonsai data structure [44]. m-Bonsai can represent a dynamic
trie with (1 + ε)n(log σ+O(1)) bits in information-theoretically optimal space, where n is
the number of nodes, σ is the alphabet size, and ε > 0 is a constant parameter. Moreover,
node-to-node traversal is performed in O(1) expected time; however, this study does not
address dictionary implementation.

6 Conclusions
In this study, we have discussed practical rearrangement approaches of dynamic DA dictio-
naries and proposed efficient methods namely BLM, Rebuild, and TDM. Experimental
results demonstrated that the proposed methods can support much faster rearrangement
compared to existing methods. The proposed rearrangement methods require a few sec-
onds for large datasets; thus, the time will not become a problem in practical applications.
In addition, Rebuild contributes to the improvement of all dictionary operations. There-
fore, many dynamic DA implementations can provide efficient rearrangement operations
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and upgrade performance related to both space and time.
On the other hand, all practical dynamic dictionaries require very larger space com-

pared to recent static compressed dictionaries [12, 45, 46, 47, 48]. With respect to DA
dictionaries, base and check use many bits since they are pointer-based arrays. There-
fore, we will investigate efficient compression methods for base and check in dynamic
DAs.
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