
Practical Implementation of Space-Efficient
Dynamic Keyword Dictionaries

Shunsuke Kanda1,2(0000-0002-5462-122X), Kazuhiro Morita1, and Masao
Fuketa1

1 Graduate School of Advanced Technology and Science, Tokushima University,
Minamijosanjima 2-1, Tokushima 770-8506, Japan

2 Research Fellow of Japan Society for the Promotion of Science, Japan
shnsk.knd@gmail.com, {kam,fuketa}@is.tokushima-u.ac.jp

Abstract. A keyword dictionary is an associative array with string keys.
Although it is a classical data structure, recent applications require the
management of massive string data using the keyword dictionary in main
memory. Therefore, its space-efficient implementation is very important.
If limited to static applications, there are a number of very compact
dictionary implementations; however, existing dynamic implementations
consume much larger space than static ones. In this paper, we propose a
new practical implementation of space-efficient dynamic keyword dictio-
naries. Our implementation uses path decomposition, which is proposed
for constructing cache-friendly trie structures, for dynamic construction
in compact space with a different approach. Using experiments on real-
world datasets, we show that our implementation can construct keyword
dictionaries in spaces up to 2.8x smaller than the most compact existing
dynamic implementation.

Keywords: Keyword dictionaries · Compact data structures · Tries ·
Path decomposition

1 Introduction

In modern computer science, managing massive string data in main memory is
a fundamental problem. Many researchers have investigated space-efficient data
structures for string processing. In this paper, we focus on the practical imple-
mentation of keyword dictionaries that are an associative array with string keys.
Although the keyword dictionary is a classical data structure used in natural
language processing and information retrieval, many recent applications require
space-efficient implementations to store large string datasets, as reported in [16].
For example, Mavlyutov et al. [17] considered URIs of 14 GB for RDF data man-
agement systems.

As for static keyword dictionaries, very compact implementations have been
proposed recently. For example, Mart́ınez-Prieto et al. [16] proposed and practi-
cally evaluated compact implementations using some techniques. Grossi and Ot-
taviano [8] proposed a cache-friendly compact implementation using an ordered

2 S. Kanda, K. Morita, and M. Fuketa

labeled tree structure known as a trie [14]. For the implementations, Kanda et
al. [13] empirically evaluated some compression strategies. Also, Kanda et al.
[12] proposed a fast and compact implementation using an improved double-
array trie. While those implementations can store large datasets in compact
space, their applications are limited because key insertion and deletion are not
supported.

As for dynamic keyword dictionaries, there are some space-efficient imple-
mentations such as the HAT-trie [1], adaptive radix tree (ART) [15], Judy [3],
and Cedar [22]. While those implementations attempt to improve the space effi-
ciency by reducing pointer overheads, they still consume much larger space than
the static implementations. For example, to store a geographic name dataset,
the HAT-trie uses space 7.2x larger than the static implementation by Grossi
and Ottaviano [8], from the experimental results in this paper and [12]. On the
other hand, a number of practical compact dynamic trie representations have
been presented. Darragh et al. [5] proposed the Bonsai tree, which is a com-
pact hash-based trie representation. Recently, Poyias and Raman [19] improved
the Bonsai tree, namely, m-Bonsai. The m-Bonsai tree can represent a trie in
asymptotically information-theoretically optimal space while supporting basic
tree operations in constant expected time. Takagi et al. [20] also proposed an
efficient data structure for online string processing. However, there has been no
discussion or evaluation about keyword dictionary implementation. Therefore,
we must address the engineering of more space-efficient implementations.

In this paper, we propose a new implementation of space-efficient dynamic
keyword dictionaries. Our implementation is based on a trie formed by path
decomposition [6], which is a trie transformation technique. The path decom-
position was proposed for constructing cache-friendly trie structures and was
utilized in static applications [8, 11]; however, we use it for dynamic dictionary
construction with a different approach. We implement space-efficient dictionar-
ies by applying the m-Bonsai representation to this approach. From experiments
using read-world datasets considering various applications, we show that our
implementation is much more compact than existing dynamic implementations.

2 Preliminaries

2.1 Basic Notations and Definitions

A sequence A with n entries, A[0]A[1] . . . A[n − 1], is denoted by A[0, n). For a
sequence A[0, n), |A| denotes the length n. A keyword is a byte character string
that always has a special terminator drawn by $, that is, $ 6∈ w[0, n − 1) and
w[n − 1] = $ for a keyword w[0, n). The base of the logarithm is 2 throughout
this paper.

2.2 Path Decomposition

A trie [14] is an ordered labeled tree to store a set of strings, and is constructed by
merging common prefixes. Path decomposition [6] is a technique that transforms

Practical Implementation of Space-Efficient Dynamic Keyword Dictionaries 3

the trie as follows. It first chooses a root-to-leaf path in the original trie, and
then associates the path with a root of the new trie. Children of the new root
are recursively defined as the roots of new subtries corresponding to original
subtries hanging off the path.

The existing purpose of path decomposition is to reduce the number of node-
to-node traversals by lowering the height of the resulting tree. Although the
height depends on a strategy of choosing a path, any strategy can guarantee
that the height is not greater than that of the Patricia tree [18]; therefore, some
improvement in cache efficiency can be expected for all strategies. The following
fact is important for our data structure:

Fact 1. Each node of a path-decomposed trie corresponds to some node-to-leaf
path of the original trie; therefore, the number of path-decomposed trie nodes is
the same as that of registered keywords because the original trie has the same
number of leaf nodes owing to the special keyword terminator.

2.3 m-Bonsai

The m-Bonsai tree [19] is a compact dynamic trie representation that defines
nodes on hash table Q with m slots using open addressing. Let n denote the
number of trie nodes. We refer to α = n/m (0 ≤ α ≤ 1) as a load factor. We
assume that n and m are pre-given. As each node is located at some slot, we
denote node IDs using slot addresses. That is, a node with ID v (or node v) is
located on Q[v]. Defining a new child from node v with symbol c is implemented
in three steps, assuming that the alphabet size of symbols is σ. The first step
creates a hash key 〈v, c〉 of the child. The second step obtains an initial address
of the child, u = h(〈v, c〉), where h is a hush function such that h : {0, . . . ,m ·
σ − 1} → {0, . . . ,m − 1}. The third step locates the child on Q[u′], where u′ is
the first empty slot address from the initial address u using linear probing. In
other words, the new child ID is defined as u′.

If we simply store the hash key 〈v, c〉 in Q[u′] to check for membership, each
slot uses large space of dlog(m · σ)e bits. To reduce this space to dlog σe bits,
m-Bonsai uses the quotienting technique [14, Exercise 6.13], while additionally
introducing displacement array D such that D[u′] stores the distance of u′ and
u, that is, the number of collisions. The displacement array D can be represented
in compact space since the average value is small from [19, Proposition 1].

Practical Implementation. Although Poyias and Raman [19] proposed two types
of displacement array representation, we adopt a simply modified version of the
practical one. In our representation, we first try to store values of D in an array
D0 with each entry using ∆0 bits. If D[i] < 2∆0 − 1, we set D0[i] = D[i].
Otherwise, we set D0[i] = 2∆0 − 1 and store D[i] to an auxiliary associative
array implemented using a standard data structure. The original representation
uses a small hash table based on the original Bonsai method as an additional
second data structure; however, our version omits the hash table because it
is difficult to estimate the predefined length of the table when adopted for our

4 S. Kanda, K. Morita, and M. Fuketa

implementation. From preliminary experiments, we obtained the best parameter
∆0 = 6 for α = 0.8. We provide the details and source code at https://github.
com/kamp78/bonsais.

3 New Implementation

This section presents a new dynamic keyword dictionary implementation through
path decomposition, namely, the dynamic path-decomposed trie (DynPDT).

3.1 Basic Idea: Incremental Path Decomposition

We present a basic idea called incremental path decomposition. This idea con-
structs a path-decomposed trie by incrementally defining nodes corresponding
to each keyword in insertion order. We show the data structure of the path-
decomposed trie while describing the insertion procedure for a keyword w as
follows:

– If the dictionary is empty, a root labeled with w is defined. In this paper, we
denote such a label on node v by Lv.

– If the dictionary is not empty, a keyword search is started from the root
with two steps by setting v to the root ID. The first step compares w with
Lv. If w = Lv, the procedure terminates because the keyword is already
registered; otherwise, the second step finds a child with symbol 〈i, w[i]〉 such
that w[i] 6= Lv[i] and w[0, i) = Lv[0, i). If not found, the keyword is inserted
by adding a new edge labeled with the symbol 〈i, w[i]〉 and a new child labeled
with the remaining suffix w[i+1, |w|). If found, the procedure returns to the
first step after updating v to the child ID and w to the remaining suffix.

That is to say, the path-decomposed trie has node labels representing some
suffixes of keywords. Additionally, it has edge labels composed of a node label
position and a byte character. A keyword search is also performed by that pro-
cedure. The feature of the incremental path decomposition is to locate nodes
corresponding to early inserted keywords near the root. In other words, the
search cost for such keywords is low. However, Sect. 4 evaluates the performance
of DynPDT for random-ordered keywords without considering the feature.

3.2 Implementation with m-Bonsai

To obtain high space efficiency, DynPDT represents the path-decomposed trie
using m-Bonsai; however, this representation has the following problem. As the
edge label is a pair 〈i, c〉 composed of node label position i and byte character c,
the edge labels are drawn from an alphabet of size σ = 256 ·Λ, where Λ denotes
the maximum length of the node labels. The m-Bonsai representation requires
the fixing of the σ parameter to predefine the allocation size of each Q slot and
the hash function, but Λ, or σ, is an unfixed parameter in dynamic applications
registering unknown keywords.

Practical Implementation of Space-Efficient Dynamic Keyword Dictionaries 5

5, i

0, q 1, a

𝜙

1, i

𝑣'

𝑣(

𝑣) 𝑣*

𝑣+

𝑣,

technology$

cs$

ue$ lly$ cal$

9 −𝜆

Fig. 1: Example of DynPDT when λ = 8.

To solve this problem, we forcibly fix the alphabet size as σ = 256 · λ by
introducing a new parameter λ. If position i on Lv is greater than or equal to λ,
we create virtual nodes called step nodes with a special symbol φ by repeating
to add child u from node v with symbol φ, to set v to u, and to decrement i by λ,
until i < λ. This solution creates additional step nodes depending on λ. When λ
is too small, many step nodes are created. When λ is too large, the space usage
of Q becomes large because each slot uses dlog(256 · λ)e bits. Therefore, it is
necessary to define a proper λ. Sect. 4.1 shows such parameters obtained from
experiments using read-world datasets.

Examples. Fig. 1 shows an example of DynPDT constructed by inserting key-
words technology$, technics$, technique$, technically$, and technologi-

cal$ in this order, setting λ = 8. The nodes are defined in order of v1, v2, . . . , v6.
We show how to search technically$ using the example. First, we set w to the
query keyword and compare w with Lv1 . As w[0, 5) = Lv1 [0, 5) = techn, we
move to v2 using symbol 〈5, w[5]〉 = 〈5, i〉 and update w to the remaining suffix
cally$. Next, we compare w with Lv2 . As w[0, 1) = Lv2 [0, 1) = c, we move to
v4 using symbol 〈1, w[1]〉 = 〈1, a〉 and update w to the remaining suffix lly$.
Finally, we can see that the query keyword is registered from w = Lv4 .

We also show how to search technological$. In the same manner as above,
we set w to the query keyword and compare w with Lv1 . The result is w[0, 9) =
Lv1 [0, 9) = technolog, but we cannot create symbol 〈9, i〉 because this symbol
exceeds the alphabet size from λ ≤ 9. Therefore, we move to step node v5 using
symbol φ. From 9 − λ < λ, i.e., 1 < λ, we can create symbol 〈1, i〉 and move
to node v6 using the symbol. Finally, we can see that the query keyword is
registered because the remaining suffix cal$ is the same as Lv6 .

Implementation Remarks. Arbitrary values associated with each keyword can be
maintained using the space of each node label. Keyword deletion can be simply
implemented by introducing flags for each node (i.e., for each keyword) in a
manner similar to open address hashing.

To use the m-Bonsai representation, it is necessary to predefine the number of
Q slots depending on the number of nodes and the load factor. In other words, it
is necessary to estimate the number of nodes expected for a dataset. Fortunately,

6 S. Kanda, K. Morita, and M. Fuketa

𝑃

cal$technology$ cs$ uelly

(a) Plain management

𝐵 1 0 1 1 0 1 0 1

𝑃

3lly10technology2cs 3cal2ue

(b) Bitmap management in ` = 4

Fig. 2: Examples of node label management for DynPDT in Fig. 1.

we can roughly estimate the number of nodes of DynPDT easier than a plain
trie because this is the same as the number of keywords (from Fact 1) and some
step nodes depending on a proper λ.

3.3 Node Label Management

The node labels are stored separately from the m-Bonsai structure (i.e., the
hash table and the displacement array) because these labels are variable-length
strings. The plainest implementation uses pointer array P of length m such
that P [i] stores a pointer to Li. This implementation can perform to access and
append a node label in constant time, but it uses large space with m pointers.
We call this implementation plain management. Fig. 2a shows an example of
plain management.

We present an alternative compact implementation that reduces the pointer
overhead in a manner similar to sparsetable of Google Sparse Hash at https://
github.com/sparsehash/sparsehash. This implementation divides node labels
into groups of ` labels over the IDs. That is, the first group consists of L0 . . . L`−1,
the second group consists of L` . . . L2`−1, and so on. Moreover, we introduce
bitmap B such that B[i] = 1 if Li exists. The implementation concatenates
node labels Li such that B[i] = 1 in each group, while keeping the ID order. The
length of P becomes dm/`e by maintaining pointers to the concatenated label
strings for each group. We call this implementation bitmap management.

Using array P and bitmap B, accessing Li is performed as follows. If B[i] = 0,
Li does not exist; otherwise, we obtain the target concatenated label string from
P [g], where g = bi/`c. We also obtain bit chunk Bg = B[g · `, (g+ 1) · `) over the
target group. Let j be the number of occurrences of 1s in Bg[0, i mod `+ 1). Li
is the j-th node label of the concatenated label string. As ` is constant, counting
the bit occurrences in chunk Bg is supported in constant time using the popcount
operation [7]. Therefore, the access time is the same as the time of scanning the
concatenated label string until the j-th node label.

By simply concatenating node labels (e.g., the second group in Fig. 2a is
calue in ` = 4), the scan is performed by sequentially counting terminators
in O(` ·Λ) time, where Λ again denotes the maximum length of the node labels.
We shorten the scan time using the skipping technique used in array hashing [2].
This technique puts its length in front of each node label using VByte encoding
[21]. Note that we can omit the terminators of each node label. The skipping

Practical Implementation of Space-Efficient Dynamic Keyword Dictionaries 7

technique allows us to jump ahead to the start of the next node label; therefore,
the scan is supported in O(`) time. Fig. 2b shows an example of the bitmap
management with the skipping technique.

Comparison of Space Usage. We compare plain and bitmap management in
terms of space usage, assuming a 64-bit memory address architecture. In plain
management, the pointer array P uses 64m bits. The space usage of storing
node labels is 8N bits, where N denotes the total length, i.e., N =

∑
i<m |Li|.

In bitmap management, the pointer array P uses 64dm/`e bits, and the bitmap
B uses m bits. The total length of the node labels using VByte encoding becomes
equal to N if all node labels are shorter than 128 because such a code length is
1 byte. Fortunately, almost 100% of the node labels were shorter than 128 in all
datasets in Sect. 4. Therefore, the VByte encoding does not become a significant
overhead.

For simplicity, we assume that there are no overheads related to the VByte
encoding and memory allocation. The overall space usage of plain manage-
ment is 64m + 8N bits. The overall space usage of bitmap management is
64dm/`e+m+ 8N bits. That is, in roughly ` > 1.02, the space usage of bitmap
management is smaller than that of plain management. Moreover, bitmap man-
agement works more efficiently when N is small because the pointer overhead of
64m bits becomes relatively large over 8N bits in plain management.

4 Experimental Evaluation

This section analyzes the practical performance of DynPDT. The source code of
our implementation is available at https://github.com/kamp78/dynpdt.

4.1 Settings

We carried out experiments on an Intel Xeon E5540 @2.53 GHz with 32 GB of
RAM (L2 cache: 1 MB, L3 cache: 8 MB), running Ubuntu Server 16.04 LTS.
The data structures were implemented in C++ and compiled using g++ (version
5.4.0) with optimization -O9. We used /proc/<PID>/statm to measure the res-
ident set size. We used std::chrono::duration cast to measure the runtimes
of operations.

Datasets. We selected six real-world datasets:

Geonames is composed of geographic names in the asciiname column of the
GeoNames dump, available at http://download.geonames.org/export/

dump/.
Wiki is page titles of English Wikipedia in February 2015, available at https:

//dumps.wikimedia.org/enwiki/.
UK is URLs obtained from a 2005 crawl of the .uk domain performed by Ubi-

Crawler [4], available at http://law.di.unimi.it/webdata/uk-2005/.

8 S. Kanda, K. Morita, and M. Fuketa

Table 1: Information concerning datasets.
Dataset Size Keywords Nodes NPK BPK BPNL

Geonames 101.2 6,784,722 48,240,884 7.1 15.6 10.1
Wiki 227.2 11,519,354 110,962,030 9.6 20.7 12.6
UK 2,723.3 39,459,925 748,571,709 19.0 72.4 22.0
WebBase 6,782.1 118,142,155 1,426,314,849 12.1 60.2 15.1
LUBM 3,194.1 52,616,588 247,740,552 4.7 63.7 7.7
DNA 189.3 15,265,943 36,223,473 2.4 13.0 5.4

WebBase is URLs of a 2001 crawl performed by the WebBase crawler [10],
available at http://law.di.unimi.it/webdata/webbase-2001/.

LUBM is URIs extracted from the dataset generated by the Lehigh Univer-
sity Benchmark [9] for 1,600 universities, from DS5 available at https:

//exascale.info/projects/web-of-data-uri/.
DNA is substrings of 12 characters found in the DNA dataset from Pizza&Chili

corpus, available at http://pizzachili.dcc.uchile.cl/texts/dna/.

Table 1 summarizes relevant statistics for each dataset, where Size is the
total length of keywords in MiB, Keywords is the number of distinct keywords,
Nodes is the number of nodes in a plain trie, NPK is the average number of
plain trie nodes per keyword, BPK is the average number of bytes per keyword,
and BPNL is the average number of bytes per node label in DynPDT.

Dictionary Data Structures. We compared the performance of DynPDT with
that of m-Bonsai. For DynPDT, we tested plain and bitmap management de-
noted by Plain and Bitmap-`, respectively. For Bitmap-`, we considered that `
is 8, 16, 32, and 64. We set the int data type to associated values in DynPDT.
We tested m-Bonsai based on a plain trie without maintaining associated val-
ues. For both DynPDT and m-Bonsai, we implemented the auxiliary associative
array using std::map.

We also compared some existing dynamic dictionary implementations. We
selected five space-efficient ones as follows: Sparsehash is Google Sparse Hash
that is an associative array with keys and values of arbitrary data types, Judy
is a trie implementation developed at Hewlett-Packard Research Labs [3], HAT-
trie is a keyword dictionary implementation with the combination of a trie and
a cache-conscious hash table [1], ART is a trie implementation designed for
efficient main-memory database systems [15], and Cedar is a state-of-the-art
double-array prefix trie implementation [22]. In common with DynPDT, we
set the int data type to associated values. For HAT-trie and ART, we used
the implementations available at https://github.com/dcjones/hat-trie and
https://github.com/armon/libart, respectively. As Cedar uses 32-bit integers
to represent trie nodes, we could not run the test on WebBase.

Parameters. Both DynPDT and m-Bonsai have two parameters α and ∆0. We
set α = 0.8 in common with previous settings [5, 19]. We set the number of Q

Practical Implementation of Space-Efficient Dynamic Keyword Dictionaries 9

0.8
0.82
0.84
0.86
0.88
0.9
0.92
0.94
0.96
0.98

0
5
10
15
20
25
30
35
40
45
50

2 4 8 16 32 64 128

Lo
ad
	fa
ct
or

Sp
ac
e	
us
ag
e	
(M

iB
)

λ

std::map

Q	and	D

α'

Fig. 3: Result of parameter test for λ on Wiki.

0.8
0.82
0.84
0.86
0.88
0.9
0.92
0.94
0.96
0.98

0
20
40
60
80

100
120
140
160
180
200

2 4 8 16 32 64 128

Lo
ad
	fa
ct
or

Sp
ac
e	
us
ag
e	
(M

iB
)

λ

std::map

Q	and	D

α'

Fig. 4: Result of parameter test for λ on LUBM.

slots to that of keywords divided by 0.8 in DynPDT. Note that the resulting
load factor α′ in DynPDT is increased from α, depending on the number of
step nodes. In m-Bonsai, we set the number of Q slots to that of plain trie
nodes divided by 0.8. Note that the difference of the number of Q slots between
DynPDT and m-Bonsai closes with decreasing NPK. We set ∆0 = 6 from the
preliminary experiments in Sect. 2.3.

DynPDT also has parameter λ, which involves α′ and the space usage of hash
table Q and the auxiliary associative array. When λ is large, the allocation size of
Q becomes large. When λ is small, the number of step nodes, or α′, is increased.
The latter poses slow operations and a large auxiliary associative array because
the average value of D is increased. To search a proper λ, we pretested λ = 2x

in 2 ≤ x ≤ 7 for each dataset. Figures 3 and 4 show the results on Wiki and
LUBM, respectively. The figures show the sum space usage of Q, D, and the
auxiliary std::map. The parameter α′ is also shown. We could not construct
the dictionary for λ = 2 on Wiki because α′ became too large. From the results,
α′ closes 0.8, and the space usage is moderately increased from some λ. The

10 S. Kanda, K. Morita, and M. Fuketa

Table 2: Results of space usage in bytes per keyword.
Data Structure Geonames Wiki UK WebBase LUBM DNA

Plain 46.0 46.6 54.4 47.5 45.0 44.8
Bitmap-8 18.7 21.2 31.3 24.0 15.5 13.0
Bitmap-16 16.8 18.8 28.2 21.0 13.8 11.0
Bitmap-32 15.0 17.4 27.1 19.8 12.1 9.8
Bitmap-64 14.5 16.9 26.4 19.2 11.5 9.0

m-Bonsai 17.7 23.6 46.1 29.3 11.4 5.9

Sparsehash 62.3 71.1 131.0 119.0 122.0 43.4
Judy 47.6 50.5 60.3 53.5 33.9 24.3
HAT-trie 35.4 40.2 82.3 68.9 64.7 28.9
ART 87.1 93.1 140.9 126.9 118.9 71.1
Cedar 30.5 41.1 58.4 – 29.7 22.1

same tendency appeared for the other datasets.1 In the experiments, we chose
the smallest λ such that α′ ≤ 0.81 for each dataset. We set λ to 16, 16, 64, 32,
16, and 4 on Geonames, Wiki, UK, WebBase, LUBM, and DNA, respectively.

4.2 Results

We constructed the dictionaries by inserting keywords in random order. We
measured the resident set size required for the construction. We measured the
insertion and search runtimes without I/O overheads. The insertion time was
averaged on 3 runs. To measure the search time, we chose 1 million random
keywords from each dataset. The search time was averaged on 10 runs.

Space Usage. Table 2 shows the results. It is obvious that bitmap management
can reduce the pointer overhead of plain management. Bitmap-64 is up to 5x
smaller than Plain on DNA. When BPNL is small, the compression rate is high
based on the comparison analysis in Sect. 3.3. Compared with m-Bonsai, Bitmap-
64 is 1.2–1.7x smaller except for LUBM and DNA. Bitmap-64 is 1.5x larger on
DNA because the difference of the Q lengths is small from NPK. Note that
m-Bonsai did not maintain associated values of the int type. If m-Bonsai main-
tained those values ideally without any overhead, 4 bytes (i.e., sizeof(int))
are added per keyword. That is, Bitmap-64 becomes smaller than m-Bonsai on
all the datasets. In the existing dictionaries, Cedar is basically small although
32-bit integers are used to represent node pointers. In Wiki and WebBase, HAT-
trie and Judy are the smallest. Compared with the smallest existing dictionaries,
Bitmap-64 is 2.1–2.8x smaller. On UK and WebBase whose BPNL is large, Plain
is also smaller than the existing dictionaries because the pointer overhead is rel-
atively small over the overall space usage.

1 All the results are provided at https://github.com/kamp78/dynpdt/wiki.

Practical Implementation of Space-Efficient Dynamic Keyword Dictionaries 11

Table 3: Results of insertion time in microseconds per keyword.
Data Structure Geonames Wiki UK WebBase LUBM DNA

Plain 1.00 1.14 1.65 2.37 1.65 1.35
Bitmap-8 1.25 1.38 1.99 2.64 1.91 1.58
Bitmap-16 1.37 1.57 2.29 2.93 1.99 1.66
Bitmap-32 1.69 1.93 2.91 3.47 2.29 1.91
Bitmap-64 2.13 2.65 4.12 4.60 2.87 2.30

m-Bonsai 1.62 2.22 7.13 7.69 4.80 1.03

Sparsehash 4.31 5.15 9.13 11.32 8.72 1.99
Judy 0.93 1.06 2.15 2.94 1.53 0.90
HAT-trie 0.96 1.13 1.63 1.75 2.58 0.84
ART 1.07 1.19 2.20 2.98 1.44 0.87
Cedar 1.05 1.07 2.56 – 2.50 0.90

Table 4: Results of search time in microseconds per keyword.
Data Structure Geonames Wiki UK WebBase LUBM DNA

Plain 1.01 1.13 1.53 2.20 1.12 1.08
Bitmap-8 1.22 1.38 2.15 2.40 1.26 1.26
Bitmap-16 1.38 1.61 2.47 2.74 1.43 1.38
Bitmap-32 1.71 2.06 3.25 3.72 1.61 1.83
Bitmap-64 2.31 3.01 4.88 5.29 2.16 2.18

m-Bonsai 1.47 2.06 6.69 8.30 3.08 0.86

Sparsehash 0.34 0.44 0.67 0.80 0.67 0.29
Judy 0.70 0.88 2.02 2.42 0.79 0.44
HAT-trie 0.31 0.35 0.61 0.80 0.51 0.22
ART 0.81 1.03 1.84 2.68 0.67 0.63
Cedar 0.42 0.69 2.51 – 0.69 0.22

Insertion Time. Table 3 shows the results. In DynPDT, Plain is the fastest and
Bitmap-64 is the slowest essentially, but Bitmap-8 is not much slower than Plain.
We compare Bitmap-8 for the following. Compared with m-Bonsai, Bitmap-8
is faster except for DNA. In particular, the difference is very large on datasets
whose BPK is large owing to the path decomposition. Bitmap-8 is 3.6x, 2.9x and
2.5x faster than m-Bonsai on UK, WebBase, and LUBM, respectively. Bitmap-8
is 1.5x slower than m-Bonsai on DNA. Compared with the existing dictionaries,
Bitmap-8 is not the fastest but is very competitive on UK, WebBase, and LUBM;
however, Bitmap-8 is the slowest on the other datasets except for Sparsehash.

Search Time. Table 4 shows the results. Like the insertion time results, Plain is
the fastest in DynPDT, and Bitmap-8 is faster than m-Bonsai except for DNA.
On the other hand, DynPDT is basically slower compared with the existing
dictionaries. Bitmap-8 is up to 5.7x slower than the fastest HAT-trie. On UK
and WebBase, Bitmap-8 is close to Judy, ART, and Cedar.

12 S. Kanda, K. Morita, and M. Fuketa

5 Conclusion and Future Work

In this paper, we presented DynPDT, which is a new practical implementation of
space-efficient dynamic keyword dictionaries through incremental path decompo-
sition. Our experimental results showed that DynPDT uses much smaller space
than existing keyword dictionary implementations, but its time performance is
not very high. The main cause is that the node-to-node traversal using m-Bonsai
is slow compared with pointer-based representations. Another disadvantage is
that the hash table cannot be easily resized owing to open addressing. There-
fore, we will improve upon those disadvantages by engineering an alternative
trie representation in the future. Moreover, we will address more compression
because DynPDT still consumes a larger space compared with existing static
compact implementations. For example, the static data structure by Grossi and
Ottaviano [8] can implement a dictionary in space 2.9x smaller than DynPDT
for the geographic name dataset.

We have discussed dictionary structures supporting only search operations
for a given keyword as a basic associative array. On the other hand, dictionary
structures supporting invertible mapping between strings and unique IDs, known
as string dictionaries, are also important in many applications [16]. In principle,
DynPDT can provide such invertible mapping because m-Bonsai supports leaf-
to-root traversal operations. Therefore, we will propose and evaluate DynPDT
structures adapting to string dictionaries.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number 17J07555. We
would like to thank Editage (www.editage.jp) for English language editing.

References

1. Askitis, N., Sinha, R.: Engineering scalable, cache and space efficient tries for
strings. The VLDB Journal 19(5), 633–660 (2010)

2. Askitis, N., Zobel, J.: Cache-conscious collision resolution in string hash tables.
In: Proc. 12th International Symposium on String Processing and Information
Retrieval (SPIRE). pp. 91–102 (2005)

3. Baskins, D.: Judy IV Shop Manual (2002)
4. Boldi, P., Codenotti, B., Santini, M., Vigna, S.: Ubicrawler: A scalable fully dis-

tributed web crawler. Software: Practice and Experience 34(8), 711–726 (2004)
5. Darragh, J.J., Cleary, J.G., Witten, I.H.: Bonsai: a compact representation of trees.

Software: Practice and Experience 23(3), 277–291 (1993)
6. Ferragina, P., Grossi, R., Gupta, A., Shah, R., Vitter, J.S.: On searching com-

pressed string collections cache-obliviously. In: Proc. 27th Symposium on Princi-
ples of Database Systems (PODS). pp. 181–190 (2008)

7. González, R., Grabowski, S., Mäkinen, V., Navarro, G.: Practical implementation
of rank and select queries. In: Poster Proc. 4th Workshop on Experimental and
Efficient Algorithms (WEA). pp. 27–38 (2005)

Practical Implementation of Space-Efficient Dynamic Keyword Dictionaries 13

8. Grossi, R., Ottaviano, G.: Fast compressed tries through path decompositions.
ACM Journal of Experimental Algorithmics 19(1), Article 1.8 (2014)

9. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base sys-
tems. Web Semantics: Science, Services and Agents on the World Wide Web 3(2),
158–182 (2005)

10. Hirai, J., Raghavan, S., Garcia-Molina, H., Paepcke, A.: WebBase: A repository of
web pages. Computer Networks 33(1), 277–293 (2000)

11. Hsu, B.J.P., Ottaviano, G.: Space-efficient data structures for top-k completion. In:
Proc. 22nd International Conference on World Wide Web (WWW). pp. 583–594
(2013)

12. Kanda, S., Morita, K., Fuketa, M.: Compressed double-array tries for string dictio-
naries supporting fast lookup. Knowledge and Information Systems 51(3), 1023–
1042 (2017)

13. Kanda, S., Morita, K., Fuketa, M.: Practical string dictionary compression using
string dictionary encoding. In: Proc. 3rd International Conference on Big Data
Innovations and Applications (Innovate-Data). pp. 1–8 (2017)

14. Knuth, D.E.: The art of computer programming, 3: sorting and searching. Addison
Wesley, Redwood City, CA, USA, 2nd edn. (1998)

15. Leis, V., Kemper, A., Neumann, T.: The adaptive radix tree: ARTful indexing for
main-memory databases. In: Proc. IEEE 29th International Conference on Data
Engineering (ICDE). pp. 38–49 (2013)

16. Mart́ınez-Prieto, M.A., Brisaboa, N., Cánovas, R., Claude, F., Navarro, G.: Prac-
tical compressed string dictionaries. Information Systems 56, 73–108 (2016)

17. Mavlyutov, R., Wylot, M., Cudre-Mauroux, P.: A comparison of data structures
to manage URIs on the Web of data. In: Proc. 12th European Semantic Web
Conference (ESWC). pp. 137–151 (2015)

18. Morrison, D.R.: PATRICIA: practical algorithm to retrieve information coded in
alphanumeric. Journal of the ACM 15(4), 514–534 (1968)

19. Poyias, A., Raman, R.: Improved practical compact dynamic tries. In: Proc. 22nd
International Symposium on String Processing and Information Retrieval (SPIRE).
pp. 324–336 (2015)

20. Takagi, T., Inenaga, S., Sadakane, K., Arimura, H.: Packed compact tries: A fast
and efficient data structure for online string processing. In: Proc. 27th International
Workshop on Combinatorial Algorithms (IWOCA). pp. 213–225 (2016)

21. Williams, H.E., Zobel, J.: Compressing integers for fast file access. Computer Jour-
nal 42(3), 193–201 (1999)

22. Yoshinaga, N., Kitsuregawa, M.: A self-adaptive classifier for efficient text-stream
processing. In: Proc. 24th International Conference on Computational Linguistics
(COLING). pp. 1091–1102 (2014)

